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Abstract 

Punches in boxing are intricate actions requiring the coordinated and synergistic 

recruitment of leg, trunk and arm musculature. Maximal punches can have a marked 

impact on the outcomes of boxing contests. Currently, there is an absence of research 

appraising the biomechanics and physical performance-related qualities associated 

with boxing punches, and as such, there are no practical guidelines pertaining to 

resistance training and its impact upon these important characteristics. In this respect, 

coaches and boxers are reliant consequently upon non-scientific approaches to 

training and contest preparation. Thus, the purpose of this thesis was to quantify the 

biomechanics and physical performance-related qualities associated with maximal 

punching techniques common to amateur boxing, and investigate the extent to which 

resistance training enhances such features. 

 Study 1 quantified the three-dimensional kinetics and kinematics of maximal 

punches common to boxing competition to identify the differences between punch 

types (straights, hooks, and uppercuts), whilst Study 2 investigated the movement 

variability of these measures across punch types. These studies revealed significant 

differences for the majority of kinetic and kinematic variables between punch types. 

High within-subject, between-subject, and biological variability were recorded for the 

same variables across punch types, independent of the amount of boxing experience. 

These findings confirm that kinetic and kinematic characteristics vary from punch to 

punch, with boxers appearing to manipulate kinematic variables in order to achieve a 

consistent intensity and end-product. Study 3 quantified the relationships between 

physical performance-related traits and kinetic and kinematic qualities of maximal 

punches, and revealed moderate-to-large associations with muscular strength and 

power. From this, Study 4 appraised the extent to which strength and contrast 

resistance training enhanced maximal punch biomechanics and physical 

performance-related qualities. The findings highlighted that contrast training was 

superior among male amateur boxers over a six-week intervention, though strength 

training alone also brought about improvements. 

 This current research has advanced our understanding of maximal punching 

and the influence of resistance training on a variety of its determinants. Nonetheless, 

future research is required to identify if the same findings can be generalised to higher 

standards of boxing and whether alternative strength and conditioning strategies are 

equally, or more effective. 
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1.1. Research Overview 

Amateur boxing is a combat sport involving short duration, high-intensity 

offensive and defensive manoeuvres, interspersed with short recovery periods 

(Khanna & Manna, 2006; Smith, 2006). Competition within the sport, governed by the 

Amateur International Boxing Association (AIBA), encompasses weight-restricted full-

contact combat with the fists between two opponents. Boxing bouts are usually 

contested over three rounds, each two to three-minutes in duration, divided by one-

minute rest intervals. Competitions within the United Kingdom are sanctioned by the 

Amateur Boxing Association (ABA) at regional and national level whilst international 

bouts, including those staged at the summer Olympic Games, are sanctioned by the 

AIBA. 

The intention during competition is to outperform or ‘knock-out’ an opponent 

through the implementation of clean punching techniques to the head or torso. 

Performances are scored at the end of each round by the collective impressions of 

five judges using a 10-point must-system (in which the winner of the round receives 

10 points whilst the other competitor receives nine or less). A boxer’s overall score per 

round is based upon the number of ‘quality’ blows landed to the target area (head and 

torso), domination of a bout via technical and tactical superiority and competitiveness 

(AIBA, 2017a). However, the most desirable conclusion to a contest is to knock-out 

the opponent, ensuring a win (Mack, Stojsih, Sherman, Dau, & Bir, 2010). A knock-

out is achieved if one boxer is unable to continue competing as a result of punches 

administered by the opponent.  

Despite amateur boxing’s standing as an Olympic event with global popularity 

(201 affiliated nations - AIBA, 2017b), there is a surprising dearth of performance-
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related scientific research. With competitive international-level boxing characterised 

by high-intensity efforts incorporating ~1.55 actions per second (APS), ~21 punches, 

~3.6 defensive movements and ~56 vertical hip movements (Davis, Connorton, Driver, 

Anderson, & Waldock, 2018) and national-level boxing by ~25 punches and ~10 

defences per minute across 3 rounds (Thomson & Lamb, 2016), it seems logical its 

protagonists would benefit from interventions based on quantitative appraisals both of 

physical performance-related traits and movement demands, and the biomechanical 

factors that relate to the principal action of punching. That is, scrutiny of boxing’s 

internal and external loads will be useful for developing conditioning programmes 

(Thomson & Lamb, 2017a; 2017b), whereas detailed analysis of punching could 

translate into specific training regimes designed to enhance a boxer’s most effective 

actions.  

The paucity of biomechanical data published in the boxing literature has 

concentrated on the kinematics (motion and velocity) of the upper-body limbs, 

focussing specifically on the hand, wrist and forearm (Cheraghi, Alinejad, Arshi, & 

Shirzad, 2014; Fuchs, Lindinger, & Schwameder, 2018; Kimm & Thiel, 2015; 

Piorkowski, Barton, & Lees, 2011: Viano et al., 2005; Walilko, Viano, & Bir, 2005).  

Moreover, some studies have measured the lower-body kinematics (Bingul, Bulgan, 

Tore, Aydin, & Bal, 2017), electromyography (EMG) (Dyson, Smith, Martin, & Fenn, 

2007; Lockwood & Tant, 1997), and impact forces (Dyson et al., 2007; Loturco et al., 

2016; Mack et al., 2010; Pierce, Reinbold, Lyngard, Goldman, & Pastore, 2006; Smith, 

Dyson, Hale, & Janaway, 2000; Viano et al., 2005; Walilko et al., 2005) of boxing 

punches. 

Straight (jab and rear-hand cross) and hook (lead and rear) punches have been 

assessed as these particular strikes are the most common in amateur boxing bouts 
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with Thomson and Lamb (2016) documenting ~64 jabs, ~39 rear-hand crosses, ~49 

lead hooks and ~23 rear hooks over the duration of 9-minute male contests. Thomson 

and Lamb (2016) also reported on the uppercut (~5 lead uppercut; ~8 rear uppercut), 

punches considered to be fundamental and often most effective within the sport. 

Advancing the understanding of the kinematics of such punch techniques during 

performance could provide coaches and boxers expedient information regarding a 

boxer’s technical proficiency and reveal potential interventions likely to enhance 

punching performance. 

Though kinematic analyses can be useful in appraising sporting technique, 

research tends to also consider the forces (kinetics) of the actions performed. While 

numerous studies have assessed the impact force of different punches using wall-

mounted force plates and dynamometers (Atha, Yeadon, Sandover, & Parsons, 1985; 

Dyson et al., 2007; Loturco et al., 2016; Mack et al., 2010; Smith et al., 2000; Viano et 

al., 2005; Walilko et al., 2005), kinetic analysis of a boxer’s lower-body during such 

punches is limited to two studies (Mack et al., 2010; Yan-ju, Yi-gang, Yan, & Zheng-

Ping; 2013) which both noted its important role to the biomechanical features (fist 

velocity and impact force) of punches. Still, further research is warranted, particularly 

involving ground reaction force (GRF), arguably the most important factor that 

influences maximal punching capabilities (Lenetsky, Harris, & Brughelli, 2013). 

GRF assessments allow biomechanists to observe the magnitude of force 

produced and in what direction it is applied. Such assessments have been reported in 

other combat sports, such as taekwondo (Wasik, Santos, & Franchini, 2013), karate 

(Lechostaw, Oziewiecki, & Mączyński, 2005), kung fu and karate (Gulledge & Dapena, 

2008) and jiu-jitsu (Oliveira, Moreira, Godoy, & Cambraia, 2006), but not in boxing. A 

better understanding of how force is being generated and the differences, for example, 
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between lead and rear leg force production, and the direction(s) in which it is applied 

across different punch techniques could assist in the development of boxing-specific 

strength and conditioning strategies. 

The variability of specific biomechanical qualities (impact kinetics) has also 

been reported in previously (Lenetsky, Brughelli, Nates, Cross, & Lormier, 2017), with 

experienced boxers exhibiting less movement variance than less experienced boxers. 

Research has presented contrasting views concerning movement variance (MV), with 

some authors reporting it as an undesirable quality indicative of dysfunctional 

movement patterns (Bartlett, 2007; Langdown, Bridge, & Li, 2012), while others have 

suggested how skilled-athletes purposely vary movements as a means of adapting 

their athletic performance to environmental and/or situational features of competition 

(Bartlett, 2007; Wagner et al., 2012). Though Lenetsky et al. (2017) identified the 

variability for punch impact kinetics, the extent of MV and its influence on the upper-

body kinematics and lower-body kinetics of maximal punching are currently unknown. 

Consequently, quantifying MV could develop understanding of the consistency of 

specific biomechanical qualities from punch-to-punch, providing useful information to 

document performance changes following training interventions and/or practices. 

Whilst the technique of punching is important, several papers have identified 

the importance of a boxer’s physical and physiological abilities (Chaabene et al., 2015; 

Del Vecchio, 2011; Loturco et al., 2016). For example, Guidetti, Musulin, and Baldari, 

(2002) concluded that upper-body isometric muscular strength was a key determinant 

of boxing performance. Indeed, maximal punch force is dependent upon a boxer’s 

muscular strength (Chaabene et al., 2015), power (Turner et al., 2011) and speed 

(Chang, Evans, Crowe, Zhang, & Shan, 2011) alongside their technical expertise. 

Moreover, physical attributes have been found to contribute as much as 56-65% to the 
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variation in punching accelerations and 67-85% of impact forces observed across elite 

karate competitors and elite amateur boxers, respectively (Loturco et al., 2014; 2016). 

Most recently, Loturco et al. (2016) determined strength and power variables 

correlated with punching force in boxers, yet speed (Coulson & Archer, 2015) and 

acceleration (Adamczyk & Antoniak, 2010), thought to be imperative to punching 

performance, were not examined. Furthermore, contrary to Guidetti et al. (2002), poor 

relationships have been reported between isometric strength tests and dynamic 

sporting movements (Anderson et al., 1991; Coulson & Archer, 2015; James et al., 

2016a; Rutherford & Jones, 1986; Wilson, Lyttle, Ostrowski, & Murphy, 1995). It is 

therefore clear further investigation into dynamic strength and power qualities in 

boxer’s remains warranted. 

Recognition of physical performance-related qualities influencing maximal 

punching performance is necessary to prepare boxers for the specific demands of 

competition and to reinforce correct movement mechanics (Piorkowski, 2009). Such 

physical qualities could be identified through physical tests and assessments of 

punching performance. Due to the lack of punch-specific physical and physiological 

profiles, when attempting to enhance punching ability boxing coaches are reliant upon 

methods of trial and error, meaning current boxing training methods are likely sub-

optimal (Turner et al., 2011). As maximal punching necessitates a spectrum of 

physical and physiological qualities (Čepulėnas, Bružas, Mockus, & Subačius, 2011), 

understanding the specific components that primarily influence punching will inform 

boxers and coaches of the eminent training modality to consider. Furthermore, as the 

number of good quality punches landed on a target area is an essential component 

within the sport and an important judging criterion within competitive bouts (AIBA, 

2017a), the need for further study of punching performance within boxing is evident. 
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Punches in boxing are intricate actions requiring the coordinated and 

synergistic recruitment of leg, trunk and arm musculature (Turner et al., 2011). As the 

most desired contest outcome is victory by way of knocking out the opponent, coaches 

and boxers should consider if additional training methods can be implemented within 

existing programmes to facilitate punch performance. One training method that may 

enhance the important kinetic and kinematic elements of punching, such as force 

(Turner et al., 2011), velocity (La Bounty, Campbell, Galvan, Cooke, & Antonio, 2011), 

power (Loturco et al., 2016), acceleration (McGill, Chaimberg, Frost, & Fenwick, 2010) 

and rate of force development (RFD) (Tack, 2013), is resistance training (RT). 

Defined as ‘a mode of training that requires skeletal muscles to produce force 

against an external resistance source’ (Swinton, 2013; p.5), RT in various forms has 

displayed the ability to elicit significant physical and physiological improvements in 

elite athletes across a wide spectrum of sports (Bompa & Haff, 2009). However, as 

sports science has advanced, boxing has been plagued by archaic misconceptions, 

often refusing to accept the improvements observed in many sports as a result of RT 

(Price, 2006). This hesitancy stems from popular myths that are commonplace within 

the boxing community, such as RT increases body mass, produces muscular 

‘stiffness’ and diminishes aerobic endurance capabilities (Bourne, Todd, & Todd, 

2002; Ebben & Blackhard, 1997; Klatten, 2016; Zekas, 2016). Although boxing has a 

reputation for avoiding RT, amateur boxing at the elite level has recently started to 

appreciate the performance improvements associated with it (AIBA, 2015b). 

Knowledge of how to increase punching performance through RT is still in its 

infancy (Turner et al., 2011). Despite the global appeal of the sport, the majority of the 

boxing literature related to RT (Dengel et al., 1987; Getke & Digtyarev, 1989; Solovey, 

1983), was written over two decades ago (commonly within the former Soviet Union). 
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From the results of these papers, RT was found to augment various aspects of 

amateur boxing performance including punching force, power and velocity (Cordes, 

1991; Dengel et al., 1987; Getke & Digtyarev, 1989; Solovey, 1983). However, the 

aforementioned studies did not adequately describe the research methods employed, 

casting doubt on the validity of the findings. Additionally, due to advancements in the 

understanding of RT and evolution of amateur boxing as a sport (such as rule changes, 

scoring criteria and protective equipment requirements) (Bianco et al., 2013), previous 

findings are likely obsolete. Contemporary research cognisant of scientific principles 

is required to assess the effects of RT upon punching performance, and to provide 

coaches and boxers with a clear understanding of how training interventions can 

improve performance. Indeed, little is actually known about the punch performance 

benefits possible following a structured, controlled RT intervention. Moreover, given 

the potential of biomechanical assessments for informing specific RT strategies 

geared to improving punching performance (Lenetsky et al., 2013), there is 

considerable scope for investigation in amateur boxing. 

 

1.2. Statement of aims 

 The aims of this programme of research were to (i) assess the kinetic and 

kinematic qualities of fundamental punching techniques performed by competitive 

amateur boxers; (ii) quantify the role and effect of MV to maximal punching, (iii) explore 

the physical performance-related characteristics associated with maximal punching 

performance; and (iv) examine the influence of various RT methods (interventions) on 

punching performance. 
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1.3. Research Questions 

A series of research questions were formulated in order to address the above aims. 

 

i. Which kinetic and kinematic measures are associated with maximal 

punching performance across conventional punch techniques? 

Previous research assessing biomechanical features of boxing has discovered 

important kinematic features during the execution of certain punches. Kinematic 

properties such as linear and angular velocity of the upper extremities, fist 

displacement and peak velocity, are important qualities in the delivery and execution 

of those punches (Bernabeu et al., 2016; Cabral, João, Amado, & Veloso, 2010; 

Cheraghi et al., 2014). Although this data is available, its validity is questionable as 

most studies assessing the kinematics of maximal punches have not utilised three-

dimensional motion capture systems which are considered the ‘gold standard’ of 

kinematic analysis (Piorkowski et al., 2011). Additionally, prior analyses have reported 

contrasting findings with respect to elbow joint velocities (Cheraghi et al., 2014; 

Whiting et al.,1988) and pelvic and trunk angular velocities (Cabral et al., 2010), all 

being presented as the principal kinematic determinants of punching performance. It 

is therefore clear that the distinct kinematic features of each conventional boxing 

punch technique are still be fully elucidated, and as such, a comprehensive analysis 

using a three-dimensional motion capture system is justified to understand the 

kinematic components of maximal punching. Furthermore, Mack et al. (2010) 

discovered maximal straight and hook punching forces correlated with the sum of 

lower body forces (GRF) produced by male amateur boxers. Su et al. (2013) also 

established that, when in a boxing stance, GRF produced by the lead foot correlated 
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with the velocity of the jab punch in elite male boxers. Though these findings 

demonstrate that GRF production is a key component of punching performance, little 

is known about the direction of force application during different punching techniques.  

 

ii. How does movement variability affect maximal punching performance 

and is it influenced by boxing experience? 

Within- and between-subject movement variability (MV) are important to 

performance outcomes owing to the individual characteristics of performers, whereby 

different athletes often execute the same movements with varying techniques whilst 

still achieving similar outcomes (Bartlett et al., 2007). Indeed, the execution of dynamic 

full-body movements across various sports has identified the role of MV to successful 

performance (Button, MacLeod, Sanders, & Coleman, 2003; Handford, 2006; Morriss, 

Bartlett & Fowler, 1997; Robins, Davids, Bartlett, & Wheat, 2008; Schmidt, 2012; Scott, 

Li, & Davids, 1997; Wagner et al., 2012). When punching a target (opponent), boxers 

must concurrently judge the distance to it, select the specific technique to utilise, and 

assess how forcefully to perform the punch whilst it is still within ‘punching range’ (Choi 

& Mark, 2004; Hristovski, Davids, Araújo, & Button, 2006). Particular characteristics of 

boxing likely add to maximal punch MV, such as the boxer’s arm segment dimensions 

(limb lengths), pre-fight strategy, fighting ‘style’, and perceived efficiency (perception 

of own performance capability - Davids et al., 2006). Lenetsky et al. (2017) identified 

small-to-moderate variability for punch impact kinetics, though the extent of MV, its 

influence on the upper-body kinematics and lower-body kinetics of maximal punching, 

and its extent according to boxing experience is unknown. Research has yet to 
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elucidate whether different punch types exhibit more MV than others, and why this 

might occur.  

 

iii. Are physical performance-related characteristics associated with 

maximal punching?  

Research has established a strong association between strength and power 

qualities and punching ability among amateur boxers (Chaabene et al., 2015; Loturco 

et al., 2016; Obmiński, Borkowski, & Sikorski, 2011). However, the absence of 

dynamic maximal strength assessments means it is still unclear whether muscular 

strength is an important factor in punching performance. Furthermore, the interaction 

between punching performance and physical attributes such as speed and 

acceleration have not been reported, which is surprising considering the importance 

of both variables to boxing performance (Chang et al., 2011; Loturco et al., 2014). 

Previous research suggests that augmenting muscular strength and power through 

RT may have the potential to improve performance, and if other physical properties 

have an influence on a boxer’s punching capabilities, the creation of boxing-specific 

strength and conditioning strategies could be enhanced. 

 

iv. Can resistance training programmes enhance maximal punching 

performance? 

Having established the biomechanical properties and their associations with 

physical performance-related qualities of punches, it follows that subsequent research 

seeks to determine the optimal training method of augmenting these variables via 
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training (Bishop, 2008). As the majority of essential physical properties required in 

competitive sport can be enhanced through the completion of specific RT 

programmes, a detailed analysis of punching performance following a RT intervention, 

including lower-body kinetics and upper-body kinematics, would provide insight into 

the effects of RT upon the biomechanics of maximal punches. 

Within the present body of literature, RT programmes have been reported to 

enhance biomechanical and physical performance-related characteristics of punching 

performance. The most prominent method used in prior studies to improve boxing 

performance, particularly punching force and velocity, was strength training (ST) 

(Dengel et al., 1987; Getke & Digtyarev, 1989; Solovey, 1983). More recently, other 

researchers have identified straight and hook punch impact force improvements of up 

to 27% following ST programmes (Čepulėnas et al., 2011; Hlavačka, 2014; Kim et al., 

2018). Additionally, Mathews and Comfort (2008) endorsed the implementation of 

contrast training (CT) into boxer’s training programmes, however no empirical 

research has examined its effects on the upper-kinematics and lower-body kinetics of 

maximal punching. As RT (in various forms) can improve muscular strength and 

power, which both contribute to punching force and velocity (Loturco et al., 2016), an 

assessment of the efficacy of such training methods upon maximal punch 

biomechanics is warranted. 

1.4. Organisation of Chapters 

The programme of research presented in this thesis details the key biomechanical 

characteristics of fundamental punching techniques observed in amateur boxing, and 

the role of physical performance-related traits that influence them among senior male 

amateur boxers. Chapter 2 presents a review of literature relating to the aims of the 
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thesis, including appraisals of research on maximal punch biomechanics, the physical 

and physiological traits related to maximal punching, and a critical evaluation of the 

strength and weaknesses of the various resistance training methodologies and their 

relevance to combat sports performance. Subsequent chapters detail the 

quantification of the kinetics and kinematics (Chapter 3) and MV (Chapter 4) of 

maximal punches, followed by an appraisal of the physical performance-related 

qualities underpinning maximal punches, and assessment of the relationship between 

maximal punch biomechanics and strength, power, and speed variables (Chapter 5). 

The fourth empirical study (Chapter 6) quantifies the effects of different RT 

interventions upon maximal punch kinetics and kinematics and physical performance-

related qualities associated with maximal punching. The final chapter (Chapter 7) 

addresses the research questions established in Chapter 1, synthesises the novel 

findings of the thesis, highlights certain limitations of the research, and identifies 

potential directions for future research. 
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Review of Literature 
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2.1. Introduction 

Despite the global popularity of boxing at amateur level, the biomechanical and 

physical performance-related factors that influence punching performance have yet to 

be established within the scientific literature. Indeed, whilst numerous papers have 
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reported research on the physiology of amateur boxing competition, the principal 

biomechanical and physical performance-related traits that relate to maximal punching 

performance have not been adequately established. Furthermore, no research has 

examined the effects of different RT programmes on the biomechanics of maximal 

punches and the physical traits that influence them. This absence of knowledge across 

these areas of performance suggests that the optimal training strategies to enhance 

punching performance remain unknown. This chapter appraises the pertinent 

research on a) the kinetics and kinematics of various punch techniques, b) the 

movement variability (MV) of these biomechanical variables, c) the physical 

performance-related qualities related to boxing punches, and d) the potential for a RT 

programme to enhance maximal punching performance. 

 

2.2. Boxing Synopsis 

2.2.1. Historical Overview 

The sport of boxing can be traced back five millennia with evidence of unarmed 

hand-to-hand combat taking place in Sumeria and Ancient Egypt (Pierce, Reinbold, 

Lyngard, Goldman, & Pastore, 2006; Smith, 2006). Evidence also appears to highlight 

that boxing was widespread across North Africa and Mediterranean countries between 

4000 BC and 1500 BC (Fleisher, Andre, Loubet, & Odd, 1989). Introduced in the 

Olympic Games of 776 BC, the first form of sporting combat to be contested was a 

striking and grappling hybrid known as ‘pankration’. This primitive event permitted the 

simultaneous use of both boxing and wrestling techniques with few rules 

representative of modern-day boxing competition (Hickey, 1980). 
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Hand-to-hand combat evolved into prize-fighting in the 17th century and 

comprised working class pugilists competing under the patronage of the middle and 

upper classes (Hickey, 1980; Smith, 2006). Similar to pankration however, it remained 

a violent pastime largely void of rules until 1742 when striking a downed opponent 

became prohibited and contests were halted if a competitor was unable to reach a 

standing position after 30 seconds (Perkins et al., 2014). Such rules however did little 

to reduce the prevalence of serious injury (Smith, 2006), and prize-fighting remained 

somewhat primitive until 1867 when John Douglas introduced the ‘Queensbury Rules 

for the Sport of Boxing’ in an attempt to improve the safety of the sport (Barker, 1998). 

Major changes to competition included the mandated use of padded gloves during 

bouts as opposed to bareknuckle combat, attempts to match competitors according to 

body mass instead of ‘open-weight’ competition, the implementation of 3-minute 

‘rounds’ separated by 1-minute recovery intervals in place of unlimited bout durations, 

the prohibition of wrestling and/or grappling and the termination of a contest if a boxer 

was unable to reach a standing position after 10 seconds as a result of a knockdown 

caused by an opponent’s punch. 

The introduction of the Queensbury rules to prize-fighting not only enhanced 

the safety of competitors in professional boxing, but also prompted the growth of an 

amateur version of the sport that had materialised in the preceding years (Perkins et 

al., 2014). From 1881, the professional and amateur variants of boxing deviated along 

different paths, with professional boxing contested for prize money and amateur 

boxing becoming a ‘vehicle for physical and personal development and the pursuit of 

virtue’ (Perkins et al., 2014; p.10). Since then, amateur boxing has evolved to the point 

whereby the governing body (AIBA) currently has 201 national federations affiliated to 

its programme (Chaabene et al., 2015). The popularity of amateur boxing as an 
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Olympic sport has also enhanced over time, as demonstrated by an increase from 18 

boxers (all from America due to the last minute decision to include boxing in the 

games) competing at the 1904 Olympics (Grasso, 2013) to 286 male and female 

boxers representing 76 nations at 2016 Rio Olympic Games (AIBA, 2017c). 

 

2.2.2. Characteristics of Competition 

Similar to other combat sports, amateur boxing is categorised by a series of 

weight classes that are ‘intended to promote fair competition by matching opponents 

of equal stature and body mass’ (Langan-Evans, Close, & Morton, 2011; p.25). Since 

the introduction of identifiable weight categories, boxers will characteristically attempt 

to participate in the lightest weight classification possible in anticipation of gaining a 

competitive advantage over opposing fighters (Morton, Robertson, Sutton, & 

MacLaren, 2010). Across all elite amateur boxing competitions, there are currently 10 

weight categories for senior and youth male boxers and nine for senior and youth 

female boxers (Table 2.1) (AIBA, 2017a; Perkins et al., 2014). All 10 male weight 

categories are included in the Olympic Games programme, however only three of the 

female weight classifications are currently contested, with the 2012 London Olympiad 

being the first to allow female boxers to compete for medals. Additionally, there are 

various contest formats utilised pending the experience of the competing boxers; 

within the Olympic Games and at ‘elite’ competition (aged 19-40 years), all boxers 

(male and female) contest 3 rounds of 3-minutes. Furthermore, ‘youth’ boxers (aged 

17-18 years) can take part in 3 x 3-minute rounds (male only), 3 x 2-minute rounds 

(male and female) or 4 x 2-minute rounds (male only), dependent upon an agreement 
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between opposing coaches (AIBA, 2015a; Chaabene et al., 2015). Recovery intervals 

between rounds are 1-minute for all categories, classes and genders. 

Boxing, both amateur and professional, has always been scored by judges in a 

subjective manner. Although several attempts have been made to objectify the scoring 

process (e.g. application of a computer-based system in which judges awarded points 

for ‘forceful, clean punches upon the target area’; Smith, 2006), the current method 

involves five judges using a 10-point must-system (whereby the winner of the round 

receives ten points whilst the other competitor receives nine or less). A boxer is judged 

to be victorious based upon the number of quality blows landed to a target area, 

domination of a bout via technical and tactical superiority and competitiveness (AIBA, 

2017a). 

As a full-contact combat sport, the aim of amateur boxing is to succeed in 

delivering a clean and correct punch to the opponent without being punched in return 

(Guidetti et al., 2002). The desired outcome of a contest is victory by way of knocking 

the opponent out, defined as the deliberate production of a state of motor hypotonus 

coupled with a severe disturbance of consciousness (Critchley, 1957). Within bouts, 

competitors are permitted to use various punching techniques, which are required to 

strike the frontal or lateral sections of the opposing combatant’s head and torso 

(Chaabene at al., 2015; Loturco et al., 2016). 
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Table 2.1. Current elite male, female, youth boy and youth girl amateur boxing weight classifications (adapted from AIBA, 2017a). 

  Male - elite 
Male - Olympic 

Games 
Female - elite 

Female - Olympic 
Games 

Youth boy Youth girl 

# Weight category Over kg To kg Over kg To kg Over kg To kg Over kg To kg Over kg To kg Over kg To kg 

1 Light-fly 46 49 46 49 45 48 - - 46 49 45 48 

2 Fly 49 52 49 52 48 51 48 51 49 52 48 51 

3 Bantam 52 56 52 56 51 54 - - 52 56 51 54 

4 Feather - - - - 54 57 - - - - 54 57 

5 Light 56 60 56 60 57 60 57 60 56 60 57 60 

6 Light-welter 60 64 60 64 60 64 - - 60 64 60 64 

7 Welter 64 69 64 69 64 69 - - 64 69 64 69 

8 Middle 69 75 69 75 69 75 69 75 69 75 69 75 

9 Light-heavy 75 81 75 81 75 81 - - 75 81 75 81 

10 Heavy 81 91 81 91 - - - - 81 91 - - 

11 Super-heavy 91 + 91 + - - - - 91 + - - 

Note: - indicates weight category is not utilised by AIBA; + indicates no weight limit is imposed by AIBA. 
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Successful performance in amateur boxing is often determined by technical and 

tactical superiority (Davis, Leithauser, & Beneke, 2014), however Smith (1998) and 

Lees (2002) argue that the ability to throw repeated punches of sufficient force 

throughout the duration of a contest is also paramount to success. Although these 

studies were completed during the era of computer-based scoring (1989-2013), it is 

plausible the views proposed by Smith (1998) and Lees (2002) remain relevant to 

present day competition as aggression and ‘competitiveness’ are rewarded positively 

by judges. 

Due to the alteration from an impressionistic to a computer-based scoring 

method in 1989, a greater importance was placed upon the development of punching 

force in straight punches (Dyson, Smith, Fenn, & Martin, 2005). Because judges 

scoring bouts using the computer system could struggle to reward boxers for 

numerous punches thrown rapidly, boxers began to implement strategies that 

focussed upon landing one or two forceful blows likely to be acknowledged by scoring 

judges (Dyson et al., 2005). However, the reversal back to impressionistic scoring in 

2013 has not diminished the requirement of forceful punches within bouts. Pertinent 

to professional boxing, current amateur competition requires combatants to attack 

perpetually throughout all three rounds of a bout, with this strategy appearing to be the 

optimal approach to achieving success (Davis et al., 2013; 2015; El Ashker, 2011; 

Pierce et al., 2006). Indeed, elite amateur boxers can execute up to 300 punches 

during a fight (Święcicki, Klukowski, & Hűbner-Woźniak, 2013), suggesting repeated 

punching is a key requirement of successful performance. 

The diverse range of punching techniques that comprise the offensive arsenal 

available to both amateur and professional boxers permits the opportunity to land 

damaging strikes from various angles and locations. The labels bestowed to the 
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traditional punch types observed within boxing somewhat detail the trajectory that the 

punches travel when executed. Traditionally, there are three different punching 

classifications that are commonly observed. These comprise straight, hook and 

uppercut punches and such actions have served the sport of boxing consummately 

since the introduction of the Queensbury rules in 1867 (Billingham, 2015). The various 

punching techniques observed within boxing are listed in Table 2.2. 

 

2.3. Punch techniques within boxing 

Punching is an exceptionally dynamic and complex motion that emerges 

through the transfer of momentum via the kinetic chain (Cheraghi et al., 2014; Koryac, 

1991). An intricate action comprising movement of the legs, trunk and arm 

musculature, a punch results in the fist acting as a rigid weapon projected at high 

velocity to cause physical damage to an opponent (Piorkowski, 2009; Turner et al., 

2011). Research by Buse (2006) confirmed the effectiveness of punching as a method 

of causing damage within combat sports, discovering that striking (such as punching 

and kicking) was the prominent method of obtaining victory following the outcome 

analysis of 642 competitive mixed martial arts (MMA) contests. Of 182 contests 

decided via stoppage, 28.3% were due to head strikes and almost 60% of total 

stoppages were the result of punches. Put into perspective, the amount of contests 

stopped as a result of strikes were greater than victories secured by judges decisions 

(27%), musculoskeletal stress (16.5%), miscellaneous trauma (12.9%), choke 

submission (4.1%) and disqualification (1.0%). These results highlight that striking with 

the fists (i.e. punching) is still one of the most effective and widely used skills for 

successful performance in combat sport (Piorkowski, 2009), even within a sport that 
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permits grappling, submission holds and striking with both upper and lower 

extremities.  

Though many punches are thrown, research (Davis et al., 2018; Slimani et al., 

2017; Thomson & Lamb, 2016) has established that straight punches (jabs and rear 

hand crosses) to the head of an opponent are the principal techniques performed 

within contemporary amateur boxing contests, with winning boxers executing an 

average of 35.4 ± 8.7 (Round 1), 30.4 ± 9.7 (Round 2) and 29.8 ± 6.9 (Round 3) during 

the course of a competitive bout (El Ashker, 2011). The underlying rationale behind 

this observation lies in the fact that straight punches have a linear trajectory and 

traverse over the shortest possible distance to the target (Blower, 2007), in addition to 

a rapid delivery time (357 ± 178 ms) compared to hooks (477 ± 203 ms) (Piorkowski 

et al., 2011), and presumably, uppercuts (no previous literature has identified the 

delivery time(s) of this punch type). Furthermore, as straight punches can be executed 

effectively without a need to pre-stretch the hip, trunk and shoulder musculature, they 

do not require as much energy to execute and can reach the target at a faster rate 

compared to hook and uppercut techniques (El Ashker, 2011). This is likely to benefit 

boxers in terms of their strategic planning prior to bouts, especially as the single most 

successful boxing strategy has been suggested to be executing a high frequency of 

straight lead-hand punches to the head (Davis et al., 2013). 

El Ashker’s (2011) paper ascertained that hook punches were the second most 

popular punch technique performed to the head of an opponent in competitive bouts 

by winning boxers with average frequencies of 12.6 ± 6.4, 11.3 ± 5.3 and 9.2 ± 3.5 in 

rounds one, two and three, respectively. Meanwhile, uppercuts were performed far 

less frequently with values of 2.4 ± 1.1 (Round 1), 2.9 ± 1.8 (Round 2), and 1.6 ± 0.9 

(Round 3) recorded. It can be reasoned that hook punches are the most effective strike 
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thrown once combatant’s are at ‘medium range’ (boxers do not have to step forward 

to deliver punches; Table 2.3) as straight punches are not as damaging to an opponent 

at this distance owing to the limited space from which to generate force (AIBA, 2015c). 

Uppercut punches (usually executed at close range whereby the two combatant’s 

gloves touch or almost touch; Table 2.3) are the least frequently observed punch within 

contests, particularly when aimed at the head of an opponent (El Ashker, 2011). It is 

suggested that the scarcity of uppercuts in competitive contests results from the strike 

being the most difficult technique to master (Kapo et al., 2008), necessitating the 

shortest distance between a boxer and the target (Hristovski, Davids, Araújo, & Button, 

2006) and the counter-attacking opportunities afforded to an opponent given the close 

proximity between boxers (Thomson & Lamb, 2016). 

In order for a boxer to land a forceful blow within a contest, high levels of 

physical and physiological fitness are required alongside technical proficiency (Davis 

et al., 2013). Although the risk of being struck by an opponent is ever present, boxers 

must be committed to offensive techniques if punches are to be landed forcefully. The 

ability to land forceful, accurate punches at a high frequency is a vital strategy for 

amateur boxers as this is likely to influence the decision of scoring judges. In terms of 

forceful punching, while knock-outs in amateur boxing are far more infrequent than in 

the professional variant of the sport, knock-outs do still occur and it remains the most 

conclusive end to a boxing contest (Mack et al., 2010). Accordingly, boxers seeking a 

knock-out victory require considerable muscular strength and power. Possessing such 

physical traits in addition to correct punching mechanics/technique, considerably 

elevates the potential of scoring a knock-out blow (Chaabene et al., 2015; Kravitz, 

Greene, Burkett, & Wongsathikun, 2003; Loturco et al., 2016). 
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Straight punches are the most frequent punches performed within competitive 

bouts, most commonly when combatants are standing at long range (Table 2.3) (El 

Ashker, 2011). These punches are valuable techniques to perform due to the speed 

at which they can be delivered and the distance that can be maintained from an 

opponent, even when attacking. Furthermore, straight punches are arguably easier to 

perform and are less physically demanding than other varieties of punches due the 

lower degree of technicality and coordination required (El Ashker, 2011). There are 

two types of straight punches performed within amateur and professional boxing; the 

jab and rear-hand cross. 

When executed correctly, hook punches follow a ‘sweeping’ trajectory whereby 

the arm is swung in a circular motion about the transverse axis to strike an opponent 

outside their line of vision (Whiting et al., 1988). Hook punches are most commonly 

performed when a boxer is at ‘medium’ range (punches can be landed by either 

combatant without the need to reduce the distance). Similarly to the rear-hand cross, 

both lead and rear hooks are powerful strikes due to the inherent degree of body 

rotation required to perform the punch. An additional factor responsible for the scale 

of force generated by hook punches is the proximity of the arm to the body. Throughout 

the punch, having the shoulder horizontal to the ground and the arm flexed to a 90o 

angle at the elbow (for a traditional hook punch) allows for a highly efficient transfer of 

force from the ground to the fist (Turner, 2009a). 
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Table 2.2. Punch techniques in boxing (adapted from Thomson, Lamb, & Nicholas, 2013). 

Punch classification Punch technique Definition 

Straight  

Jab 

A straight punch from the lead hand that moves along the sagittal plane from anterior 

to posterior with the elbow fully extended at an angle of 180° and the fist pronated 

upon impact with the opponent/target. 

Rear-hand cross 

A straight punch from the rear hand that moves along the sagittal plane from anterior 

to posterior with the elbow fully extended at an angle of 180° and the fist pronated 

upon impact with the opponent/target. 

Hook 

Lead hook 

A punch from the lead hand that moves across the transverse plane in a sideward 

‘sweeping’ motion with the shoulder abducted to an angle of approximately 90° to the 

torso and the fist in a neutral position relative to the forearm. 

Rear hook 

A punch from the rear hand that moves across the transverse plane in a sideward 

‘sweeping’ motion with the shoulder abducted to an angle of approximately 90° to the 

torso and the fist in a neutral position relative to the forearm. 

Uppercut 

Lead uppercut 

A punch from the lead hand that moves along the sagittal plane and the longitudinal 

axis. Beginning with a downward projection and ending with an upward projection, 

the elbow is flexed at an angle of 90° and the fist in a supinated position. 

Rear uppercut 

A punch from the rear hand that moves along the sagittal plane and longitudinal axis. 

Beginning with a downward projection and ending with an upward projection, the 

elbow is flexed at an angle of 90° and the fist in a supinated position. 
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If landed with force and delivered with technical competence, the hook is 

perhaps the most hazardous punch (in a physiological sense) because if the fist 

connects with an unguarded jaw, the cervical spine is twisted laterally resulting in an 

almost certain knock-out (Arus, 2013). Traditionally, there are two types of hook 

punches within a boxer’s offensive arsenal; the lead hook and rear hook. 

The uppercut punch is principally implemented when boxers are at close/short 

range and is perhaps the most under-utilised punch in boxing (El Ashker, 2011), with 

both lead and rear uppercuts observed at a lower frequency (5 and 8 respectively) 

among 92 regional and national level boxers across 46 contests than straight (jab - 

64; cross - 39) and hook (lead - 49; rear - 23) punches (Thomson & Lamb, 2016). This 

observation was also noted among elite-level international boxers across 29 bouts 

whereby uppercut punches accounted for only 6.6% of total punches thrown in 

comparison to straight (52.86%) and hook (40.5%) techniques (Davis et al., 2015). As 

with hook punches, uppercuts are forceful strikes (1546 N - Viano et al., 2005) due to 

the proximity of the arm to the body (punching arm in a vertical position and the arm 

flexed at a 90o angle at the elbow). The position of the punching arm in relation to the 

centre of mass (CoM) during uppercuts, particularly the rear uppercut, permits this 

technique to be executed with considerable force and velocity due to the muscular 

torque generated at the hip, trunk and shoulder (Cabral et al., 2010). There are two 

types of uppercut punches performed within boxing; the lead uppercut (hand nearest 

the opponent) and rear uppercut (hand furthest from the opponent). From an orthodox 

stance, the lead uppercut is executed with the left hand and the rear uppercut with the 

right hand (vice versa ‘southpaw’ boxers). 

All of the punches detailed previously can also be performed to the torso of an 

opponent. Body punching is a highly effective strategy within boxing due to its ability 
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to weaken an opponent, lower his/her guard to allow more openings for head punches 

and even bring about a stoppage/knock-out if landed to the correct part of the body 

(Arus, 2013; Haislet, 1968). Although body blows can be effective from long range 

using the jab and rear-hand cross, they are arguably more effective when delivered at 

close/short range (Murphy & Sheard, 2006). This is possibly due to the trajectory of 

hook and uppercut punches allowing a boxer to strike a specific area of the torso that 

straight punches cannot reach easily whilst an opponent is situated in the traditional 

boxing stance. This area, known as the ‘floating ribs’, is considered to be the optimal 

location to cause damage to an opponent’s torso. The ‘floating ribs’ comprise the 

eleventh and twelfth ribs on the ribcage and are named as such due to the fact they 

are not attached to the sternum or cartilage of other ribs (Coletta, 2009; Miles & Barrett, 

1991). 

Although body punches can be effective techniques and provide a significant 

target (front, left side and right side of the abdomen), they are far less frequent than 

punches to the head. This was stressed by Davis et al. (2013) who observed that 

across three rounds of elite-level competition, the total number of punches to the body 

(Round 1 – 7.2 ± 6.3, Round 2 – 6.5 ± 5.1, Round 3 – 7.0 ± 5.8) was five times lower 

than punches to the head (Round 1 – 39.4 ± 11.9, Round 2 – 33.9 ± 9.6, Round 3 – 

35.2 ± 9.9). This statistic is notable given body punches were more accurate than head 

punches for all six punch types (jab, rear-hand cross, lead and rear hook, lead and 

rear uppercut) across bouts contested at the 2012 Olympic Games (Davis et al., 2015). 

Murphy and Sheard (2006) suggest that amateur boxing competitors have focussed 

solely upon head shots in competition as they are more likely to be seen by judges 

and, subsequently, scored by judges. Even though body punching was not a 

prominent characteristic of amateur boxing in years previous, the computer scoring 
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system greatly reduced the incentive to pursue this tactic and therefore encouraged 

boxers and coaches alike to favour head punches in both training and competition 

(Davis et al., 2013; Murphy & Sheard, 2006). It was plausible that the subsequent 

introduction of the same 10-point-must scoring system as used in professional boxing 

would incite a greater quantity of body punches within bouts than previously observed 

in the amateur variation of the sport. However, the findings of contemporary research 

suggest body punching has decreased further since the introduction of the new scoring 

system (Davis et al., 2015; 2018). The authors propose that this may be related to 

judges still not rewarding body punches as favourably as head punches, and more 

interestingly, that boxers now place a greater emphasis on scoring a head shot ‘knock 

down’ or knock-out due to the removal of head guards (2013). 

 

2.3.1. Key performance indicators of traditional punches 

Although the study and analysis of biomechanics is an effective way of 

enhancing sports performance, particularly within martial arts (Mustapha, Mahmud, 

Zakaria, & Sulaiman, 2015), there is a notable absence of empirical evidence 

concerning boxing (amateur or professional). Since punching technique is an essential 

component of successful boxing performance (Davis et al., 2014), it is remarkable so 

little research exists relating to the biomechanics of boxing punches.  

With regards to the kinetics of boxing punches, for example, uncertainty exists 

concerning which direction force is produced by the lower body during different 

techniques. Punching biomechanics share common traits with sporting activities such 

as javelin (Bouhlel, Chelly, Tabka, & Shephard, 2007; Whiting, Gregor, & Halushka, 

1991), shot put (Obmiński et al., 2011; Terzis, Georgiadis, Vassiliadou, & Manta, 2003) 
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and baseball pitching (Oliver & Keeley, 2010) in that there is notable distal-to-proximal 

sequencing with force being transferred from the ground via triple extension of the 

ankle, knee, and hip to the upper extremities. 

Gulledge and Dapena (2008) reported that horizontal GRF was an important 

component of forceful rear hand punches among male martial artists, but failed to 

examine vertical forces. Moreover, Cesari and Bertucco (2008) discovered greater 

anterior centre of pressure (CoP) movements than posterior among experienced 

karatekas (karate practitioners) who punched a designated target. Although Cesari 

and Bertucco (2008) concentrated the findings on the participant’s proficiency in 

maintaining dynamic stability, their study can be used to highlight the path of force 

produced during a punch (Lenetsky et al., 2013). 

While the importance of the biomechanical characteristics cannot be 

understated, the act of punching is also heavily influenced by physical performance-

related qualities that, in combination with kinetics and kinematics, contribute to the 

optimal execution of the various strikes. Despite boxing often being referred to as the 

‘sweet science’, there are few research papers that have gathered evidence relating 

to the physical and physiological requirements of the sport (Arseneau, Mekary, & 

Léger, 2011; Del Vecchio, 2011). Contemporary papers such as those by Chaabene 

et al. (2015) and Loturco et al. (2016) have contributed greatly to knowledge in this 

area, but there remain facets of boxing physiology, particularly in relation to punching, 

have not been investigated adequately. For example, Turner et al.’s (2011) paper 

suggested that a boxer’s ability to enhance the rigidity of their lead leg prior to the 

initiation of trunk rotation was a primary component required to maximise the impact 

force of the rear-hand cross. 
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Table 2.3. Classification of distance within boxing (adapted from AIBA, 2015c). 

Distance between boxers Classification 

Long range 

Competitors are at such a distance that punches cannot land without the closing of distance via 

displacement of the legs (Loturco et al., 2016). If a boxer wants to land an offensive strike to the head of 

torso of the opposing combatant, s/he must step forward with the lead leg to do so. The most frequent 

strikes performed at this range are straight punches (jabs and rear hand crosses). 

Medium range 

Punches can be landed by either combatant without the need to reduce the distance from the opponent. 

At this range, hook and uppercut punches (with varying degrees of elbow flexion and shoulder abduction) 

(Hristovski et al., 2006) and straight punches without full elbow extension are suggested to be the most 

frequent strikes performed. 

Short/close range 

Competitors are at such a distance that the combatant’s gloves are touching or almost touching. At this 

range, due to the diminished distance between boxers, uppercuts and short hooks (very compact technique 

with a large degree of elbow flexion) are the most frequent strikes executed. 
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However, despite this noteworthy judgement, no subsequent studies have 

attempted to verify Turner et al.’s (2011) verdict. Therefore, ascertaining the physical 

performance-related traits associated with punching, and subsequently relating these 

traits to pre-determined kinetic and kinematic information, would appear to be a highly 

worthwhile pursuit that could be beneficial to boxers. 

In addition to improving the many technical areas that comprise amateur boxing 

(e.g. footwork, evasiveness), it is unquestionable that enhancing a boxer’s punching 

performance is also a desired outcome of training and contest preparation. Therefore, 

the synthesis of biomechanical and physical performance-related analysis is crucial to 

not only discovering the mechanisms and physical traits that influence punching, but 

also how performance can subsequently be optimised (i.e. sport-specific strength and 

conditioning regimen).  

 

2.3.2. Jab 

The jab is a punch thrown with the lead arm (arm nearest to the opposing 

combatant) in a linear motion towards the opposing boxer along the sagittal plane 

(Figure 2.1). It can be broken down into four phases; preparatory, initiation of motion, 

impact, and recovery phases. A jab will generally be thrown from the ‘guard’ position 

(preparatory phase) from which both the lead elbow and rear knee joints begin to 

extend, which in turn produces rotation at the trunk (initiation of motion phase). At the 

conclusion of the impact phase, the lead elbow is extended to an angle of 180° whilst 

the lead shoulder is internally rotated and the lead fist pronated with the palm facing 

the ground (Sandoval-Gonzalez et al., 2009) after following a linear pathway towards 

the target. In addition, the rear knee is typically extended, the lead knee moderately 
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flexed, the lead hip medially rotated and the trunk anteriorly rotated to an angle that 

facilitates the greatest degree of protraction at the lead shoulder (dependent upon the 

initial ‘guard’ position of the individual). Following impact with the target, the lead knee 

extends and the rear knee flexes whilst the lead elbow flexes, the lead shoulder 

retracts and the trunk rotates. This is classified as the recovery phase and concludes 

with the boxer attaining the initial ‘guard’ position, permitting the ability to perform 

further offensive or defensive manoeuvres. 

The jab to the head of an opponent is arguably the most versatile punch in a 

boxer’s repertoire and is the most frequently executed within competitive bouts (Davis 

et al., 2013; 2015; 2017; 2018; El Ashker, 2011; Kapo et al., 2008; Thomson & Lamb, 

2016). In addition to being a punch of great speed, the jab can also be used to assess 

the distance necessary for delivering a further punch of greater force (such as a rear-

hand cross). The versatility of the jab punch allows it to be thrown effectively moving 

towards an opponent, moving away from an opponent or from a stationary position, 

making it an essential skill (Arus, 2013; Markovic, Suzovic, Kasum, & Jaric, 2016). 

It is suggested by Davis et al. (2013; 2015; 2018) that a successful strategy 

within competitive bouts is for a boxer to perform a high frequency of straight lead-

hand punches (i.e. jabs). In fact, the authors asserted that in order for boxers to land 

a high frequency of successful clean punches (including rear-hand punches and lead 

hooks), the single most effective strategy is to throw the jab to the head of an opponent 

with great regularity. This is further corroborated by El Ashker (2011) who verified that 

winners of competitive contests performed a considerably greater quantity of jabs 

compared to losers, especially within the third round (24.7 ± 8.6 versus 19.8 ± 17.5). 

The results of these studies imply that a strategy comprising a high volume of jabs 

may be a successful tactic for boxers to employ. Nonetheless, Davis et al. (2015) 
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identified that the accuracy of the jab was of greater importance than the frequency 

with which it was performed. This is supported by James, Robertson, Haff, Beckman, 

and Kelly (2016b) which, although MMA-based, suggests that it is the accuracy of 

offensive techniques as opposed to the volume performed that is most critical to 

successful performance in combat sports. 

 

Figure 2.1. Jab from an orthodox stance (AIBA, 2015c; p. 42). 

 

2.3.3. Rear-hand cross 

The rear-hand cross (also known as the reverse straight or rear-hand straight) 

is another form of straight punch (Figure 2.2), thrown with the arm furthest from the 

opposing combatant (referred to as the ‘rear’ arm). From the guard position, the 

initiation of motion phase begins with ankle, knee and hip extension of the rear leg, 

which in turn produces rotation of the trunk, in addition to rear shoulder protraction and 

elbow extension. Upon impact with the desired target the ankle and knee of the rear 

leg are at near maximal plantar flexion and flexion respectively whilst the rear hip 
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(relative to the position of the puncher’s body to the target) is medially rotated and at 

near-maximal extension. In terms of the upper body, the rear elbow is fully extended, 

the rear shoulder internally rotated and fully protracted, the rear fist pronated and rear 

side of trunk (relative to the target) anteriorly rotated towards. The recovery phase of 

the rear-hand cross encompasses rear knee flexion, flexion and lateral rotation of the 

rear hip, rear arm flexion, rear shoulder retraction and external rotation, moderate rear 

fist supination and rotation of the trunk in the posterior direction. The phase is finalised 

once the boxer arrives back to the initial guard position, ready to throw another punch 

when required. 

The rear-hand cross is arguably the foremost ‘power’ punch observed not only 

in boxing competition, but all combat sports (Turner et al., 2011). This is likely due to 

the degree of rear leg drive and trunk rotation alongside the distance over which the 

punch travels to its target (Cheraghi et al., 2014). The rear-hand cross can be a 

damaging strike as forceful punches to the anterior segment of the mandible can 

induce elements of physiological trauma such as nausea, equilibrium instability and 

unconciousness (Salah, 2012). This results from the cervical spine being forced into 

considerable hyperextension in conjunction with subsequent retro-flexion of the head 

(Unterharnscheidt & Unterharnscheidt, 2003). With regards to frequency, Kapo et al. 

(2008) documented that the rear-hand cross accounted for 15.5% of total punches 

recorded following an examination of punch selection and punch volume among 80 

‘first-rank’ male amateur boxers from Bosnia and Herzegovina competing in 4 x 2-

minute rounds of competitive boxing. Although this study assessed boxers over this 

bout duration as opposed to 3 x 3-minute rounds as used in present male competition, 

the authors arrived at a similar conclusion to that of El Ashker (2011) and Davis et al. 
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(2018), stating that the rear-hand cross executed with force is imperative to successful 

performance in amateur boxing. 

 

 

 

 

 

 

 

Figure 2.2. Rear-hand cross from an orthodox stance (AIBA, 2015c; p. 43). 

 

2.3.4. Lead hook 

The lead hook performed at medium range is a forceful punch completed with 

a sweeping motion of the lead arm in combination with considerable rotation of the 

trunk. From the guard position, the lead hook is usually performed with a slight counter 

movement prior to the punch from which a combination of plantar flexion and medial 

rotation of the lead ankle joint and medial rotation of the lead hip occur whilst the lead 

leg remains in a slightly flexed position throughout. The medial rotation of the ankle 

and hip triggers rotation of the trunk along the anteroposterior axis which subsequently 

creates a pre-stretch at the shoulder joint of the lead arm. Simultaneously, there is 

abduction and slight protraction of the lead shoulder with the elbow joint flexed to an 
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approximate 90° angle and the fist placed in a neutral position (neither supinated or 

pronated) relative to the forearm. At the point of impact, the elbow of the lead arm is 

flexed to an angle of 90° (forearm relative to the upper arm) and the lead shoulder 

perpendicular to the ground (also to a 90° angle). Additionally, the lead shoulder will 

have travelled from abduction to adduction. With regard to the lower limbs, the lead 

ankle is plantar flexed and exhibits a large degree of medial rotation whilst the lead 

knee will be slightly flexed and the lead hip (left side for an orthodox boxer; right side 

for a southpaw boxer) also demonstrates a large degree of medial rotation (Figure 

2.3). The rear hip knee remains in a somewhat neutral position relative to the torso 

and the rear knee slightly flexed throughout the technique. The recovery phase of the 

lead hook encompasses lateral rotation of the lead hip and ankle, slight flexion of the 

lead knee and rotation of the trunk whilst the upper limbs return to the initial guard 

position ready to execute further strikes. The lead hook is the second most frequently 

executed punch within competition according to Kapo et al. (2008) (23.2% of total 

punches) and Thomson and Lamb (2016) (26.7% of total punches). 

The lead hook can be used as both a damaging punch (i.e. knock-out blow) 

and as a ‘set-up’ punch (to create openings for other strikes). As the lead hook travels 

rapidly about the longitudinal axis with an extensive proportion of rotatory elements 

comprising the technique, the fist is propelled with considerable force to the lateral 

section of an opponent’s cranium (Sandoval-Gonzalez et al., 2009). This results in 

considerable trauma being placed on the head and neck of a boxer via translational 

and rotational accelerations. Previous research has documented average shear neck 

forces of 855 ± 537 N (Viano et al., 2005) and 994 ± 318 N (Walilko et al., 2005), jaw 

loads of 876 ± 288 N (Walilko et al., 2005), translational accelerations of 71.2 ± 32.2 

G (Viano et al., 2005), 58 ± 13 G (Walilko et al., 2005) and 43.6 ± 15.6 G (Smith, 
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Bishop, & Wells, 1988) in addition to rotational accelerations of 9306 ± 4485 rad/s2 

(Viano et al., 2005), 6343 ± 1789 rad/s2 (Walilko et al., 2005) and 675.9 ± 230.6 rad/s2 

(Smith et al., 1988) as a result of the lead hook punch.  

 

Figure 2.3. Lead hook from an orthodox stance (AIBA, 2015c; p. 47). 

 

2.3.5. Rear hook 

The rear hook is a strike of great force that travels across the transverse plane 

of motion to strike an opponent. Similar to the lead hand equivalent, the rear hook is 

usually performed with a slight counter movement to generate a greater degree of 

force upon the strike’s impact. From this counter movement position, the initiation of 

the motion phase begins with a combination of plantar flexion and medial rotation of 

the rear ankle joint and medial rotation and extension of the rear hip whilst the lead 

leg remains in slightly flexed position throughout. This is superseded by rear trunk 

rotation (relative to the target) in the anterior direction, subsequently creating a pre-

stretch at the shoulder joint of the rear arm (comparably with the lead hook). 

Simultaneously, there is abduction and slight protraction of the rear shoulder with the 
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elbow joint flexed to an approximate 90° angle and the fist placed in a neutral position 

relative to the forearm. At the point of impact, the elbow of the rear arm is flexed to an 

angle of 90° (forearm relative to the upper arm), the rear shoulder perpendicular to the 

ground (also to a 90° angle) and the trunk slightly flexed and rotated. In terms of the 

lower limbs, the rear hook is almost identical to the rear-hand cross in that the ankle 

of the rear leg is plantar flexed, the rear knee almost at are maximal extension whilst 

the rear hip (relative to the position of the puncher’s body to the target) is medially 

rotated and at maximal extension (Figure 2.4). The recovery phase of the rear hook 

involves rear knee flexion, rear hip flexion and lateral rotation, rear shoulder retraction 

and moderate rear fist supination and rotation of the trunk in the posterior direction. 

The phase is finalised once the boxer arrives back to the initial guard position, ready 

to throw another punch. 

Following the assessment of elite-level male amateur boxers, Davis et al. 

(2015) concluded that the optimal strategy for successful performance is the 

implementation of an effective rear hook technique, as this strike can significantly 

influence the outcome of competition. This was based on observing that the rear hook 

landed at higher percentages for winners than losers of bouts in both the second (P = 

0.038) and third rounds (P = 0.016). According to Haislet (1968), the rear hook is the 

most forceful punch in all of boxing, a view substantiated by Turner (2009a) as the 

proximity of the arm to the body allows for a highly efficient transfer of force from the 

ground to the fist. A forceful rear hook to the lateral segment of the jaw can cause 

intense physiological and neurological disturbances due to violent rotation of the jaw 

upon impact, including a broken/fractured mandible or unconsciousness (Arus, 2013). 

 



   

40 
 

 

Figure 2.4. Rear hook from an orthodox stance (AIBA, 2015c; p. 48). 

 

2.3.6. Lead uppercut 

The lead uppercut (Figure 2.5) is primarily aimed to land underneath the 

opposing combatant’s chin, causing the head to jolt upwards and the neck to hyper-

extend (Arus, 2013). It can be used as both a damaging punch by itself or as a ‘set-

up’ punch to force openings in an opponent’s defence. The lead uppercut punch is 

often initiated in a ‘dipped’ position (knees flexed, upper body crouched) and follows 

an inferior-to-superior (low-to-high) ascending trajectory along the sagittal plane and 

about the mediolateral axis (Thomson et al., 2013). From the ‘guard’ position 

(preparatory phase), the lead elbow and shoulder flex, the lead knee extends, the trunk 

rotates, and the lead fist begins to supinate (initiation of motion phase). At the 

conclusion of the impact phase, the lead elbow flexes to an angle of approximately 

90°, the lead shoulder flexes and protracts whilst the lead fist supinates. Commonly, 

the lower limb activity for the lead uppercut is near identical to that of the lead hook, 

albeit with a lesser degree of hip, knee and ankle medial rotation. Following impact 
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with the target, the lead knee extends, the lead arm flexes, the lead shoulder extends 

and retracts, the lead fist pronates and trunk rotates. This is classified as the recovery 

phase and concludes with boxer attaining the initial ‘guard’ position, permitting the 

ability to perform further offensive or defensive manoeuvres. 

As a result of the lead uppercut’s trajectory, it can be difficult for opposition 

boxers to observe the path of the blow (Arus, 2013), and owing to this, the possibility 

of causing damage is considerable with the opponent having limited time to react. 

Despite the potential effectiveness of this technique, Kapo et al. (2008) established 

that the lead uppercut to the head of an opponent was the punch thrown with the 

lowest frequency in competitive bouts (0.4% of total head punches). Thomson and 

Lamb (2016) also found the lead uppercut was the least frequently observed strike in 

competitive bouts, accounting for only 2.7% of total punches thrown. Uppercut 

punches in general (both lead and rear variations) are also the least observed punches 

among elite boxers, with only ~7.2 out of ~167.1 punches (4.3%) being an uppercut 

across 50 World Championship contests (Davis et al., 2018). Various explanations for 

this have been suggested within the literature. For example, Kapo et al. (2008) suggest 

how the uppercut technique is a highly-specialised skill, possibly the most difficult 

punch to master in boxing (Kapo et al., 2008), whilst Thomson and Lamb (2016) 

propose that because uppercuts are commonly performed at close/short range, both 

boxers would be in range to strike one another and subsequently provide opportunities 

for the opponent to land forceful strikes. Meanwhile, Davis et al. (2018) postulate that 

since uppercut punches are executed at ‘close’ range, it can be difficult for judges to 

observe whether a punch has landed cleanly. Subsequently, uppercut punches may 

not be rewarded as highly as straight punches whereby a clean strike is more 

noticeable. The papers of  Davis et al. (2018), Kapo et al. (2008) and Thomson and 
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Lamb (2016) demonstrate how although elite-level boxers execute more uppercut 

punches than national and regional level competitors, the lead uppercut is still the least 

observed punch in competition compared to straight, hook and rear uppercut punches, 

regardless of ability level. 

 

 

 

 

 

 

 

Figure 2.5. Lead uppercut from an orthodox stance (AIBA, 2015c; p. 52). 

 

2.3.7. Rear uppercut 

Comparably to the lead version of the punch, the rear uppercut is thrown at 

close/short range and follows an upward trajectory along the sagittal plane and around 

the mediolateral axis. From the ‘guard’ position, the initiation of motion phase leading 

up to impact involves the rear elbow flexing to a 90° angle, the rear fist supinating, 

whilst the rear shoulder flexes. The trunk and lower body motion that comprises the 

rear uppercut is similar to that of the rear-hand cross and rear hook, including triple-
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extension of the rear ankle, knee and hip, rotation of the trunk and rear shoulder 

protraction.  

The rear uppercut can be thrown with greater force than the lead uppercut 

resulting from the distance over which the rear uppercut travels to reach its target, 

whereby a larger degree of trunk rotation and rear leg drive is present compared to 

the lead variation (Figure 2.6). The rear uppercut is a more commonly observed punch 

than its lead counterpart in amateur boxing contests, comprising 1.6% - Kapo et al., 

2008) and 4.3% (Thomson & Lamb, 2016) of total punches respectively among 

national boxers, arguably because it can be executed with greater force and can also 

be an effective counter-punch (Haislet, 1968).  

 

 

 

 

 

 

 

Figure 2.6. Rear uppercut from an orthodox stance (AIBA, 2015c; p. 53). 

 

2.3.8. Influence of competition upon punch selection 
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At all levels of competition, boxers must possess the ability to throw forceful 

punches with both the lead and rear fists with technical efficiency. This view is 

highlighted through data collected by Davis et al. (2013) which revealed how punching 

combinations initiated with a lead-hand punch and finalised with a rear-hand cross or 

rear hook punch accounted for 62% of the variance in contest winners, with successful 

boxers executing a larger frequency of such punch combinations than losing boxers. 

This paper, in addition to El Ashker (2011), also suggested that the most successful 

strategy within competitive bouts is for a boxer to perform a high frequency of straight 

lead-hand punches (jabs). Although it may appear from the literature that straight 

punches, comprising the jab and rear-hand cross are the most important punches to 

master in boxing, a contemporary study by Davis et al. (2015) disputes this notion. 

This research created an activity profile based upon video footage of elite male 

amateur boxers competing at the semi-final (19 bouts) and final (10 bouts) stages of 

the 2012 London Olympic Games. The findings suggested that possessing a 

technically proficient rear hook influences the outcome of competitive bouts more so 

than performing a high frequency of lead-hand strikes. However, the authors only 

analysed the total frequencies of punches, failing to provide a temporal analysis. It 

would appear plausible to suggest that a considerable quantity of rear hook punches 

were landed by winning boxers due to their ability to implement successful ‘set up’ 

strategies, such as the use an effective jab for example. 

Following the recent rule and scoring system changes, Davis et al. (2018) 

attempted to observe if the tactics and activity profiles of competitive boxers had 

changed as a result. It was discovered that since the changes, successful boxers 

favour effective straight punching techniques (jabs and rear-hand crosses) as opposed 

to the rear hook technique. The authors propose that due to the removal of head 
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guards, boxers are more defensively-minded which has resulted in a greater distance 

between them, more defensive manoeuvres being performed (~2.5 defensive actions 

before the rule change; ~3.6 after the rule change – Davis et al., 2015; Davis et al., 

2018), and consequently an increase in ‘long’ distance punches such as jabs and rear-

hand crosses. 

Davis et al. (2015) deemed punching accuracy to be of greater importance than 

punch frequency/volume as a declining ratio of punches thrown to punches landed 

across the three rounds was observed, including a lower ratio in victorious boxers 

compared to the losers. However, Davis et al. (2018) state that as a result of the new 

scoring system, punching accuracy is perhaps not as important as when the previous 

scoring system was utilised, and so, boxers should ensure punches strike the 

opponent with notable force, even if they do not land cleanly. This view insinuates than 

simply throwing a greater volume of punches than the opponent could be viewed more 

favourably by judges. However, it seems reasonable to propose clean punches should 

be rewarded more favourably than punches that strike non target areas (such as the 

gloves, arms and shoulders).  

In addition to selecting the most effective punch technique to use at a given 

moment during a contest, the punch selection of a boxer is influenced by numerous 

factors such as strategy, skill level and characteristics of the opponent and boxer 

themselves (e.g. anthropometry, technical skill, tactical approach and physiology). As 

a result, boxers must decide the degree of force they wish to impart to each punch 

they execute within a contest. Pierce et al. (2006) examined the punching forces 

associated with lead and rear-hand punches of boxer’s mid-contest against ‘live’ 

opponents rather than forces recorded from a static target within a laboratory setting. 

The participants were professional boxers ranging from junior-lightweight (otherwise 
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known as super-featherweight) to heavyweight (n = 12) across six professional 

contests. Punching forces were recorded using a measurement device placed 

underneath the padded knuckle section of each boxing glove (‘Bestshot System’) 

which provided force data through a transmitter and receiver. The results revealed 

maximal lead-hand punch forces of 1873-2558 N for junior-lightweight boxers across 

four rounds and 2415-3416 N for the heavyweight combatants over six rounds. 

Maximal rear-hand punches were 2153-3554 N for the junior-lightweight and 2869-

3554 N for the heavyweight boxers, respectively. No other raw data relating to the 

maximal punch forces for the lead or rear hand was provided for the boxers competing 

in the additional weight categories within the study. Unfortunately, the authors did not 

choose to document the forces for each specific punch type and instead selected to 

merge straight, hook and uppercut punches into basic ‘lead’ and ‘rear’ hand 

categories. Nonetheless, notwithstanding the small sample size, the results 

highlighted that maximal force values and did not correlate with body mass, suggesting 

various aspects of boxing competition including contest strategy, punch force ability 

and an opponent’s presence can influence the degree of force that a boxer will assign 

to their punches. 

Notwithstanding the data presented, the current body of research on punch 

selections, volumes and profiles within amateur boxing was completed during the use 

of computer-based scoring rather than the 10-point-must system used in present-day 

competition. Therefore, the results of these studies may not accurately represent the 

nature of current competition as judges are encouraged to reward aggressive 

strategies in addition to clean punches landed (otherwise termed as bout ‘domination’ 

and ‘competitiveness’) (AIBA, 2015a; p. 12). It is reasonable to suggest the 

introduction of the 10-point-must scoring system will lead to an elevated quantity of 
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punches thrown per round and across the duration of contests at both novice and elite 

levels. Consequently, a need for more contemporary research in this area is required 

to achieve a general understanding of an amateur boxer’s technical, tactical and 

strategic methods under the new scoring system. 

 

2.4. Biomechanics of punching 

2.4.1. Kinematics of boxing performance 

2.4.1.1. Fist velocity 

 Walilko et al. (2005) sought to quantify the kinematic elements of jab punches 

completed by seven Olympic boxers across various weight categories (48 kg to 109 

kg). Subjects were required to strike a hybrid dummy with a frangible face-form that 

contained accelerometers and pressure sensors to measure acceleration and force 

upon impact. Kinematic data was recorded using high-speed video cameras enabling 

the calculation of peak hand velocity. In addition, accelerometers were placed in the 

boxer’s hand during trials to monitor impact data. The study’s findings revealed a non-

significant relationship between jab peak fist velocity (8.16 ± 1.38 m/s) and weight 

category (P = 0.779), indicating how this variable was not linearly associated with 

boxer’s body mass. Unfortunately, the authors analysed both jab and rear-hand cross 

punches and chose to group the hand velocity results together. Furthermore, no 

differences between punch type and their subsequent velocities were analysed. 

Piorkowski et al. (2011) also analysed fist velocities during the jab, documenting a 

peak velocity of 7.22 ± 0.72 m/s for the fist upon impact with the target. These results 

differ slightly from those within Kimm and Thiel’s (2005) study which noted jab 
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velocities of 8.1 ± 1.4 m/s and 6.6 ± 1.6 m/s by experienced male and female boxers, 

respectively, through the use of a high-speed video camera and accelerometers fixed 

to the wrist of each boxing glove.  

In terms of the rear-hand cross technique, Atha et al. (1985) assessed punch 

velocity using high-speed cameras in addition to an instrumented target with integrated 

force transducers and accelerometers. The peak fist velocity of 8.9 m/s upon impact 

with the target was similar to the results of later research (Viano et al., 2005) for the 

rear-hand cross to the jaw (8.2 ± 1.5 m/s) and the forehead (9.2 ± 1.7 m/s), 

respectively. Walilko et al.’s (2005) findings of 9.14 ± 2.06 m/s for rear-hand cross 

peak hand velocities also resemble those of Atha et al. (1985), Viano et al. (2005), 

Cheraghi et al. (2014) (7.8 ± 1.5 m/s) and Piorkowski et al. (2011) (8.22 ± 1.08 m/s). 

However, Walilko et al. (2005) amalgamated the hand velocity measurements of jab 

and rear-hand cross punches, making direct comparisons difficult. 

The fist velocity for the rear-hand cross within Whiting et al. (1988 - 5.9 ± 1.1 

m/s), Bingul et al. (2017 - southpaw stance = 4.18 ± 1.2 m/s, orthodox stance = 5.34 

± 1.38 m/s), and Tong-Iam, Rachanavy and Lawsirirat (2017 - 6.36 ± 0.45 m/s) are 

lower than those found in the studies of Atha et al. (1985), Cheraghi et al. (2014), 

Viano et al. (2005), and Walilko et al. (2005), possibly owing to the data collection 

methods and technical ability of the subjects across the various studies. Based upon 

the findings of previous research (Slimani et al., 2017; Smith et al., 2000; Thomson & 

Lamb, 2016), elite and/or more experienced boxers possess greater technical skill and 

mastery than less experienced competitors. More hours spent mastering technique(s) 

alongside a boxer’s specific anthropometry and requisite physical attributes (e.g. 

strength/power production) likely account for the greater values noted for experienced 

boxers compared to their novice and intermediate counterparts. Consequently, the 
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testing of a world-ranked professional boxer (Atha et al., 1985) and eighteen Olympic-

level amateur boxers (Viano et al., 2005; Walilko et al., 2005) may explain the superior 

punch velocities reported in these studies compared to those noted for the ‘proficient’ 

and ‘elite’ boxers in Whiting et al.’s (1988) and Bingul et al.’s (2017) papers, and Muay 

Thai kickboxers with professional boxing records in Tong-Iam et al. (2017), 

respectively. 

The lead hook punch, analysed by Viano et al. (2005), was found to have an 

average peak velocity of 11.0 ± 3.4 m/s, which is comparable to that of Piorkowski et 

al. (2011) who reported 10.61 ± 1.07 m/s for the same strike. The velocity of the rear 

hook technique has been investigated by Whiting et al. (1988) and Piorkowski (2009) 

through both 2D and 3D kinematic analysis, respectively. Whiting et al. (1988) 

obtained linear and angular velocities for various locations comprising the right upper 

extremity, including the shoulder (2.8 m/s), elbow (5.8 m/s), wrist (9.8 m/s) and fist 

(12.5 m/s). The authors reported a mean punch contact velocity of 8 ± 2.4 m/s, 

considerably lower than Piorkowski et al.’s (2011) rear hook contact velocities of 11.01 

± 2.21 m/s in experienced boxers. Although it could be argued that the subjects within 

Piorkowski et al.’s (2011) study were perhaps more technically skilled than those in 

Whiting et al. (1988), the method of analysis is also an aspect that must be considered 

as 3D motion capture systems (as used in Piorkowski et al., 2011) are more accurate 

at analysing complex full-body movements performed at great speeds, such as 

punching, than 2D systems (as used in Whiting et al., 1988) (Shan & Zhang, 2011), 

with sampling rates being the key determining factor (Baca, 2014).  

Uppercut punches have not been researched as extensively as straight and 

hook punches. The principal studies that have investigated this punch are those of 

Viano et al. (2005) and Cabral et al. (2010). Viano et al. (2005) examined the velocity 
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of the fist during rear uppercut punches to the jaw of a hybrid dummy with a frangible 

face-form. Akin to the study by Walilko et al. (2005), the hybrid dummy contained 

accelerometers and pressure sensors to measure velocity (in addition to force and 

head acceleration) upon impact and an average impact velocity of 6.7 ± 1.5 m/s was 

recorded for the rear uppercut punch. That punch velocities of the lead uppercut have 

not been quantified previously reinforces the distinct lack of kinematic data available 

for such a fundamental punch, and as such, means its quantification is worthwhile to 

inform coaches and boxers to the velocity of this punch so that performance changes 

can be subsequently monitored. 

 

2.4.1.2. Punch delivery time 

Previous research has documented delivery times of 100 ms (Atha et al., 1985) 

and 132 ± 21 ms (Whiting et al., 1988) for the rear-hand cross among professional 

and ‘proficient’ boxers. These times are lower than those of Cheraghi et al. (2014) 

(310 ± 0.06 ms) and Piorkowski et al. (2011) (353 ± 183 ms) for the same punch. This 

is due to the varying punch ‘initiation’ points between studies, with Atha et al. (1985) 

and Whiting et al. (1988) considering the extension of the elbow to be the initiation of 

a rear-hand cross punch, while the onset of ankle motion (Cheraghi et al., 2014) and 

rear leg counter movement (i.e. vertical GRF) (Piorkowski et al., 2011) defined punch 

initiation in the other studies. 

For hook punches, Whiting et al. (1988) noted a mean delivery time of 143 ± 24 

ms for the rear hook, with Piorkowski et al. (2011) reporting a higher mean time of 508 

± 243 ms, respectively. Once more, these notable differences between studies likely 

relate to the contrasting event markers (instant of shoulder abduction versus vertical 
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GRF data) and contrasting kinematic measurement analyses (3D - Piorkowski et al., 

2011; 2D - Whiting et al., 1988). Piorkowski et al. (2011) is also the only study of note 

to have documented lead hook delivery times (446 ± 150 ms). Moreover, no previous 

research has investigated the delivery times of uppercut punches (lead or rear hand), 

further emphasising the dearth of research afforded to this punch type. Quantifying the 

delivery times of different punches would provide information to coaches and boxers 

that could help inform contest preparation strategies (e.g. punches with lowest delivery 

time(s) afford an opponent less time to defend/evade). 

 

2.4.1.3. Acceleration 

A detailed body of literature is available relating to the acceleration of the head 

after a punch impact, however, very little data exists on the acceleration of a punch 

itself. Walilko et al. (2005) discovered that maximal rear-hand cross punches 

generated a mean linear acceleration of 62 ± 11 g and mean angular acceleration of 

6030 ± 2103 rad/s2, values that were significantly correlated with a boxer’s body mass. 

Bingul et al. (2017) reported that rear-hand cross punches from an orthodox stance 

(424.67 ± 104.94 m/s2) exhibited greater accelerations than the same punch from a 

southpaw stance (328.09 ± 65.83 m/s2) in elite boxers. Meanwhile, Piorkowski (2009) 

ascertained average vector accelerations for the jab (6.86 ± 2.26 m/s2), rear-hand 

cross (8.36 ± 3.34 m/s2) lead hook (5.39 ± 5.02 m/s2) and rear hook (6.04 ± 4.47 m/s2) 

punches. Interestingly, both the elbow and wrist generated the highest velocities and 

displayed elevated acceleration peaks prior to impact with the target. The authors 

hypothesised that the differences in acceleration for the different punch types 

assessed were affected by the relationship between joint range of motion, counter 
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movement and length of acceleration pathway for each technique. The hypothesis of 

Piorkowski (2009) supports Bolander et al.’s (2009) finding that peak acceleration is 

reached close to the point of maximal elbow extension in straight punches, explaining 

why boxers and martial artists are encouraged by coaches to punch ‘through’ a target 

in order to impart a greater fist acceleration upon impact, which may also enhance the 

impact force of the strike (Loturco et al., 2014). 

 

2.4.1.4. Joint angles 

The joint angles present at the elbow during the rear-hand cross were assessed 

in the study of Joch, Fritsche, and Krause (1981) among elite, national-level and 

intermediate-level boxers (n = 24, 23, and 23 respectively), and it was found that the 

typical elbow angles displayed by all the boxers, regardless of ability level, were 50-

70° at the onset and 110-130° at contact with the target. Whiting et al. (1988) noted 

how following a linear trajectory towards the target in the sagittal plane, minimum (52 

± 9°), maximum (102 ± 16°) and contact (102 ± 17°) angles of the elbow joint were 

documented for the rear-hand cross.  

Cheraghi et al. (2014) determined that rear-hand cross punches travel in the 

sagittal plane along the anteroposterior axis. This study along with Bingul et al. (2017) 

are the only ones of note that have attempted to verify the angle of the shoulder joint 

during a boxing punch, specifically the rear-hand cross. Bingul et al. (2017) reported 

impact shoulder angles of 84.3 ± 8.9° for rear-hand cross punches thrown from an 

orthodox stance, and 83.6 ± 8° from a southpaw stance. Meanwhile, Cheraghi et al.’s 

(2014) findings revealed an ‘onset angle’ (joint angle at the initiation of motion from 

the guard position) of 20 ± 4° and an ‘impact angle’ (joint angle upon impact with the 
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target) of 86 ± 5°. Additionally, the participants recorded a maximum shoulder joint 

angle of 90 ± 5°. The angle of the elbow joint was also analysed with mean maximum 

and impact elbow angles (143 ± 12° and 137 ± 12°, respectively) recorded during 

maximal rear-hand crosses. These results differ from the maximal elbow angle of 110 

± 130° reported by Joch et al. (1981) and the impact elbow angle of 102 ± 17° noted 

by Whiting et al. (1988), probably owing to the participant’s technical execution of the 

technique and the accuracy of the measurement equipment used.  

Additional kinematic assessments unique to the papers of Cheraghi et al. 

(2014) and Bingul et al. (2017) are the angles of the hip, knee and ankle joints during 

the rear-hand cross. Cheraghi et al. (2014) reported the hip joint had minimum (195 ± 

6°), maximum (211 ± 4°), onset (203 ± 3°) and impact (196 ± 7°) sagittal plane angles 

during maximal rear-hand cross punches, while mean angles of 163.89 ± 8.51° 

(orthodox stance) and 156.67 ± 6.71° (southpaw stance) were reported by Bingul et 

al. (2017). The anterior superior iliac spine, also known as the ASIS (anterior extremity 

of the iliac crest and a prominent bony landmark of the pelvis) advanced in the direction 

of the punching target by a notable margin of 28 cm from the initial position. This was 

explained to be the result of the participants shifting their body mass forwards in the 

direction of the target, via motion at the hip and pelvis, to generate greater impact 

forces. 

Sagittal plane knee joint angles ranged from 155 ± 7° (minimum) and 167 ± 9° 

(maximum) with angles of 164 ± 4° and 165 ± 12° noted at the onset and impact of the 

punch, respectively (Cheraghi et al., 2014). Meanwhile, impact knee angles of 162.9 

± 7.9° (orthodox) and 162.1 ± 8.9° (southpaw) have also been reported (Bingul et al., 

2017). The authors suggested that the extension of the knee and subsequent leg drive 

caused the body mass of the participants to travel anteriorly towards the target. This 
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has been shown by previous authors (Lenetsky, Nates, Brughelli, & Harris, 2015; 

Walilko et al., 2005) to augment the forces generated by proximal-to-distal sequencing 

in addition to enhancing the effective mass (i.e. inertial contribution, Lenetsky et al., 

2015) and end-point velocity of a strike. Meanwhile, the ankle joint also plays a 

principal role in the performance of the rear-hand cross as it contributes significantly 

to the proximal-to-distal (kinetic chain) sequence. An onset angle (dorsiflexion) of 73 

± 27° and an impact angle (plantarflexion) of 98 ± 13° were documented, underlining 

the range of motion that the ankle joint covers during the rear-hand cross punch. In 

addition, the authors observed a considerable weight transfer from the rear foot to the 

lead foot which resulted from forceful extension of the rear leg (although the authors 

did not state how this was measured). Nevertheless, the anterior weight transfer from 

the rear to lead leg and consequent forward motion corroborate the notion that leg 

drive, via triple extension of the hip, knee and ankle, is perhaps the single most crucial 

contributor to punching performance (Lenetsky et al., 2013; Turner et al., 2011). 

In terms of the joint angles during the rear hook technique, Whiting et al. (1988) 

reported minimum, maximum and target contact elbow flexion angles of 97 ± 11°, 116 

± 11° and 105 ± 15°, respectively. Whiting et al. (1988) in addition to Piorkowski (2009) 

also identified the motion and trajectory of the shoulder joint during rear (and lead) 

hook punches, however, neither of these studies assessed the angles present at this 

joint. Subsequently, the joint angle ranges at the shoulder during hook punches are 

still unknown. Although the angles of the hip, knee and ankle joints have also not been 

investigated, it is likely that these will be similar to those observed for the rear-hand 

cross due to the similarities in lower-body positioning during both strikes (Figures 2.2 

and 2.4). Therefore, due to the lack of scientific evidence, the results of Cheraghi et 
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al.’s (2014) paper may be a useful guide in terms of hip, knee and ankle joint angles 

during the rear hook. 

Unfortunately, no research has investigated the joint angles present during the 

jab, lead hook, lead uppercut or rear uppercut techniques. The lack of knowledge 

appears surprising considering the offensive advantages (jab) and damage 

capabilities (lead hook, lead and rear uppercut) of these punch types to boxing 

performance (Arus, 2013; Haislet, 1968; Viano et al., 2005; Walilko et al., 2005). 

 

2.4.1.5. Joint velocities 

Lockwood and Tant (1997) examined the linear velocities of the wrist, elbow 

and shoulder during maximal jabs performed by amateur and professional boxers. 

Despite the lack of raw values presented, the results highlighted significant differences 

(P < 0.05) in wrist and elbow velocities during jab punches between professional 

boxers and their amateur counterparts, with professionals recording superior punch 

velocities. The researchers concluded that this was the consequence of professional 

boxers having greater technical competency resulting from greater neuromuscular 

adaptations to training (Cordes, 1991; Lockwood & Tant, 1997).  

Whiting et al. (1988) utilised 2D motion analysis to assess the kinematics of 

joints that comprise the punching arm during the rear-hand cross (shoulder, elbow, 

wrist and fist) by participants with ‘proficiency’ in boxing. Despite peculiarly referring 

to rear-hand cross punches as ‘jabs’ within the paper, linear joint velocities for the 

shoulder (2.4 m/s), wrist (6.3 m/s) and fist (6.6 m/s) in addition to maximum linear and 

angular velocities (6.0 m/s and 1261 ± 320 deg/s) and angular velocity at contact (1117 
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± 405 deg/s) for the elbow were documented. Piorkowski et al.’s (2011) research was 

the first to utilise a 3D motion capture system (ProReflex MCU240 system, Qualisys 

Inc., Gothenburg, Sweden) to analyse various punch types, including the jab. 

Following the completion of maximal jab punches against a life-size strike dummy, the 

authors documented a maximum elbow extension angular velocity of 852 ± 254 deg/s 

and a maximum shoulder abduction angular velocity of -400.3 ± 100.7 deg/s.  

Cheraghi et al.’s (2014) research analysed the kinematics of rear-hand cross 

punches performed by elite male boxers. In addition to the elbow angular velocities 

mentioned previously, maximal linear velocities of the shoulder (3.1 m/s), elbow (6.7 

m/s), wrist (7.4 m/s) and fist (7.8 m/s) from the ‘ready’ position to the point of impact 

were detailed. The joint velocity results of Cheraghi et al. (2014) are similar to those 

of Nakano, Lino, Imura, and Kojima, (2014) who utilised a 3D motion capture system 

(MX-F20 system, Vicon, Oxford, UK) to document upper-extremity joint velocities 

associated with the rear-hand cross. The upper arm (5.0 ± 0.5 m/s), forearm (7.5 ± 0.9 

m/s) and fist/glove (8.7 ± 0.9 m/s) velocities are similar despite Nakano et al. (2014) 

using a target that provided a degree of movement/mobility when struck. The un-fixed 

target had a similar mass to that of a human head (4.24 ± 0.32 kg) which it can be 

argued offered the boxers a target better resembling what would be encountered in 

competitive bouts (in terms of punching to the head of an opponent). Furthermore, the 

use of a target with a degree of mobility upon impact likely encouraged the boxers to 

punch with maximal intensity without fearing injury, an issue that can surface when 

using immobile targets (Atha et al., 1985).  

Piorkowski et al. (2011) also highlighted the role of the elbow and shoulder 

joints during the rear-hand cross, with maximum elbow extension and shoulder 

abduction angular velocities of 695.5 ± 222 deg/s and -199.3 ± 240.6 deg/s observed, 
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respectively. The angular velocity of 695.5 ± 222 deg/s noted in Piorkowski et al. 

(2011) for the shoulder joint is considerably less than the 1261 ± 320 deg/s (Whiting 

et al., 1988) and 2363 ± 536 deg/s (Cheraghi et al., 2014) documented for the same 

variable in other papers; it is likely the different motion capture systems used (3D 

versus 2D) and sample rates explain this discrepancy (Baca, 2014; Shan & Zhang, 

2011). 

Cabral et al. (2005) attempted to quantify the velocity of the trunk, hip and upper 

arm body segments during maximal rear uppercut punches, discovering a notable 

proximal-to-distal sequence with peaks in the pelvic (765.2 ± 29.5 deg/s), trunk (866.7 

± 42.5 deg/s) and punching arm (1404.6 ± 102.2 deg/s) angular velocities 

(unfortunately, the authors did not present proximal-to-distal sequencing timings). The 

proximal-to-distal sequencing pattern was initiated in the lower limbs and proceeded 

distally through the pelvis, trunk, and arm before arriving at the fist. Presently, there is 

no research available relating to joint velocities observed during lead hook, rear hook, 

and lead uppercut punches, meaning that their quantification is warranted to provide 

key biomechanical information that can be used to monitor boxer’s performance 

changes/progressions following training interventions and/or practices.  

2.4.2. Kinetics of boxing performance 

2.4.2.1. Ground reaction force (GRF) and impulse 

Ground reaction force (GRF) is a kinetic variable that plays an essential role in 

punching performance. The only study of note that has assessed this area in relation 

to the jab punch is that of Yan-ju et al. (2013). Within this paper, boxers performed jab 

punches at a fixed target whilst standing with their lead and rear legs on separate force 

plates. Results indicated that the force produced by the lead leg was a significant 
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contributor (P < 0.01) to maximal jab punching performance. Conclusions from studies 

support the view that leg drive is a critical component of forceful punching, though 

unfortunately, no GRF or impulse (the product force, multiplied by the time that a force 

acts, McGinnis, 2013) values were reported. More specifically, it appears that lead leg 

drive is essential to jab performance (Yan-ju et al., 2013) whilst rear leg drive is critical 

to rear-hand cross performance (Cheraghi et al., 2014; Turner et al., 2011). However, 

it is difficult to interpret from research which direction force was produced to the 

greatest capacity (i.e. vertically or horizontally). Although Lenetsky et al. (2013) states 

leg drive during punching requires GRF to be developed in both vertical and horizontal 

directions, understanding how lower body force is generated during the jab punch 

could provide insight as to how to implement specific RT exercises that will enhance 

force production in the optimal direction. Indeed, whilst its relevance has been alluded 

to (Lenetsky et al, 2013), no scientific studies have examined the directional 

(anteroposterior, mediolateral, vertical) application of GRF and/or impulse during 

specific punch types. 

 

 

2.4.2.2. Punch impact force and impulse 

Though the effectiveness of a punch depends upon the accuracy and velocity 

of the strike (Piorkowski et al., 2011), previous research highlights punching force is 

also a necessity within competition. In a contest, the boxer who is able to consistently 

throw a high quantity of punches with accumulative force is typically deemed the victor 

(Pierce et al., 2006; Smith, 2006). Despite being stated prior to the introduction of the 

new scoring system, the view of Dyson et al. (2007) and Smith and Draper (2006) that 
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peak punching force is a critical component of successful amateur boxing performance 

still holds true. Consequently, the ability to assess and monitor the punching force of 

amateur boxers seems logical to augment the chances of success within competition. 

Several studies have assessed the force of the jab with wide-ranging results, 

likely due to the varying devices utilised to record punch force. After assessing the jab 

punch force of elite (n = 7), intermediate (n = 8) and novice (n = 8) amateur boxers 

using a specialised boxing dynamometer, Smith et al. (2000) concluded that expert 

boxers were able to produce greater punching forces than the lesser-

experienced/skilled combatants. This is highlighted in the jab forces of 2847 ± 225 N, 

2283 ± 126 N and 1604 ± 97 N for expert, intermediate and novice boxers respectively. 

These results are similar to those of Lenetsky et al. (2017) who reported how ‘trained’ 

boxers exhibited larger jab punch forces (2547 ± 776 N) than ‘untrained’ performers 

(1411 ± 365 N) in addition to Dyson et al. (2005) which observed that competitive male 

amateur boxers produced average forces of 2722 ± 75 N with the jab. 

A further study by Smith (2006) tested a selection of punch techniques 

performed by English international-level amateur boxers at both senior (n = 130) and 

junior (n = 26) levels and showed that senior boxers produced maximal forces of 1722 

± 700 N for the jab thrown to the head whilst the results of the junior boxers were not 

presented. The jab forces of the senior boxers are lower than those noted in Smith et 

al. (2000), suggested by the author to be the result of the significantly greater number 

of participants in the later study, though it appears more likely that different 

measurement methods between studies account for this difference. The results of 

Smith (2006) are larger than the 1103 ± 431 N maximal jab forces for male boxers 

discovered by Buśko et al. (2016) which utilised a modified dynamometric punch bag 

with embedded accelerometers, and ~1323 N of Tong-Iam et al. (2017) which used a 
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5 kg ‘punching ball’. However, it is difficult to establish whether the variances in jab 

punching forces can be attributed to the biomechanical and physical performance-

related differences between the boxers or the diverse range of measurement devices 

used to record punching forces (or indeed, a combination of such factors). Loturco et 

al. (2016) also assessed the maximal jab punches of international male amateur 

boxers and used a wall-mounted force platform as the measurement tool. Boxers were 

asked to perform jabs from both standardised and self-selected positions in relation to 

the force platform. Punch forces of 1152 ± 246 N from the standardised position and 

1212 ± 269 N from the self-selected position indicate how important the aspect of 

positioning is within boxing and how it can affect impact force. 

In terms of the rear-hand cross, Joch et al. (1981) reported punch forces of 

3453 N, 3023 N and 2932 N for boxers of elite, national, and intermediate-level, 

respectively. These results are slightly lower than those found in the paper of Smith et 

al. (2000) who recorded maximum forces of 5771 N and 4390 N for elite and 

intermediate boxers, respectively, and Lenetsky et al. (2017) who reported maximum 

forces of 4695 ± 673 N (‘trained’ boxers) and 2395 ± 966 N (‘untrained’ performers). 

Additionally, a peak force of 1966-2851 N was also documented for novice boxers 

from Smith et al.’s (2000) research. Viano et al.’s (2005) study recorded punch forces 

of 2349 ± 962 N for the rear-hand cross to the jaw and 3419 ± 1381 N to the head of 

a hybrid dummy. It is unclear why the punch to the head produced greater force values 

than the equivalent strike to the head, although a possible explanation could lie in that 

the boxers were more focussed on accuracy than force when striking the jaw which 

comprises a smaller surface area than the forehead. Smith (2006) found that a rear-

hand cross punch to the head produced an average force of 2643 ± 1273 N among 

senior elite amateur boxers, although unlike Viano et al. (2005), it was not stated 
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whether the participants were required to punch a particular area of the striking target 

(i.e. jaw or forehead). This suggests that peak impact forces are affected when boxers 

are required to punch with a degree of accuracy (i.e. jaw vs forehead), suggesting 

Viano et al.’s (2005) results may arguably possess greater external validity than those 

of other studies that did not necessitate accurate punching. 

Chadli et al. (2014) and Nakano et al. (2014) reported results of considerable 

differences, despite both studies testing collegiate boxers (n = 11 and n = 9, 

respectively). The differences between the 1162 N (Chadli et al., 2014) and 2146 ± 

473 N (Nakano et al., 2014) can likely be explained through both studies using unique 

measurement devices to document rear-hand cross forces. Whereas Nakano et al. 

(2014) implemented an un-fixed punch target the size and weight of a human head, 

the authors of Chadli et al. (2014) attached accelerometers to a punching target in 

addition to the inside of each boxer’s gloves. Due to the uniqueness of each study’s 

measurement equipment, it is difficult to accurately compare the results to one another 

or other papers that utilised various devices. Such measurement equipment contrasts 

may also explain the punch force differences between previous research and the 

contemporary papers of Buśko et al. (2016) and Loturco et al. (2016). Indeed, Buśko 

et al. (2016) recording punch forces of 1592.5 ± 507.1 N, and Loturco et al. (2016) 

1331 ± 234 N for the rear-hand cross from a standardised position and 1368 ± 266 N 

from a self-selected positions, respectively. 

Walilko et al.’s (2005) research examined Olympic-level boxers (n = 7) from 

varying weight-categories with, unsurprisingly, the super-heavyweight boxers (n = 2) 

producing the greatest rear-hand cross punch forces (4345 ± 280 N) across all 

participants. The authors determined that the effective mass of the combatants 

assisted in the promoting of force generation. An unexpected result of this study 
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however was that the flyweight boxers (n = 3) demonstrated greater punching forces 

than the light-welterweight and middleweight combatants (3336 ± 559 N compared to 

2910 ± 835 N and 2625 ± 543 N, respectively). The authors did not allude to why this 

punch force variance may have occurred. It can be surmised that either the flyweight 

boxers were able to strike the target with great force (by being able to utilise their 

effective mass to a greater degree), the small sample size influenced the mean data 

values, or the punch force measurement device was not accurate.  

For the lead hook, Lenetsky et al. (2017) documented peak forces of 4058 ± 

109 N in ‘trained’ boxers which is greater than those reported by Viano et al. (2005) 

among Olympic boxers (3107 ± 1404 N and 4405 ± 2318 N from the head of a hybrid 

dummy and the boxer’s fists, respectively), and those of Smith (2006) who noted peak 

punch forces of 2412 ± 813 N across elite-level senior amateur boxers for the lead 

hook. Although both subject groups are classified as being ‘elite’, the results from both 

studies reinforce the notion that boxers at the highest level (the Olympic Games for 

amateurs) can execute complex punching techniques more efficiently and dynamically 

than boxers of a lesser standard (Kimm & Thiel, 2015; Lenetsky et al., 2015). However, 

the differing force measuring equipment between studies might have also influenced 

the values obtained. 

Lenetsky et al. (2017) determined that the rear hook was the most forceful 

punch across all straight and hook punches, recording peak impact forces of 4749 ± 

107 N and 2427 ± 940 N among ‘trained’ and ‘untrained’ performers, respectively. In 

contrast, Smith (2006) identified the rear hook as being the third most forceful punch 

in amateur boxing (2,588 ± 1,040 N), behind the rear-hand cross to the body (2,646 ± 

1,083 N) and rear-hand cross to the head (2,643 ± 1,273 N). However, it can be 

suggested that the fighting ‘style’ of a boxer can influence how forceful they execute 



   

63 
 

particular punch techniques. For example, a tall boxer will commonly perform jab and 

rear-hand cross punches with greater force than hook and uppercut punches, thought 

to be the result of the greater acceleration path that can be generated. Kimm and Thiel 

(2015) confirmed that a boxer’s stature correlated with straight punch velocity, 

determining that the further the hand travels (due to the length of the upper extremity), 

the more time there is available to accelerate the fist. However, Smith (2006) did not 

provide the stature values for the boxers analysed, therefore it is unclear whether this 

element factored in the rear hook punch force scores documented. 

Viano et al., (2005) discovered peak forces of 1546 ± 857 N for the rear 

uppercut technique in boxers. Though due to this being the only study of note within 

the literature that has attempted to collect kinetic data related to the rear uppercut, 

comparisons with other findings cannot be made. No research has assessed the 

kinetic characteristics of the lead uppercut punch. Arguably, this is due to the majority 

of previous punch force measurement devices being created and/or designed to 

assess straight and hook punches rather than uppercuts (e.g. force plates/platforms, 

dynamometers, regular punch bags). Furthermore, the limited use of lead uppercut 

punches in competitive bouts, as discovered by Kapo et al. (2008), may also explain 

why researchers have not assessed the biomechanics of the lead uppercut in great 

detail. 

These findings serve to highlight the forces associated with maximal punches 

among boxers. Understanding the impact forces of different punches could provide 

coaches and boxers with an insight as to which punch(es) is most likely to cause 

damage to an opponent, and subsequently, influence contest preparation depending 

upon pre-fight strategies/tactics. Furthermore, integrating punch force and kinetic and 

kinematic assessments will enable an all-inclusive analysis of maximal punches that 
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could assist in the development of strength and conditioning programmes with the aim 

of augmenting the biomechanical characteristics of the techniques. 

 

2.4.3. The interaction of kinetics and kinematics on maximal punching 

 Understanding the kinematic and kinetic components that comprise maximal 

punching is essential to understanding how the body produces force and motion. Of 

particular importance is identifying how kinematic and kinetic elements of punching, 

particularly GRF and pre-impact hand/fist velocity, influence each other to produce a 

strike of maximal intensity. Cheraghi et al. (2014) established the importance of leg 

drive, particularly the rear leg, to the velocity of the gloved fist upon impact with an 

intended target. Leg drive from the rear leg to lead leg (produced via plantar-flexion of 

the ankle joint and extension of the knee joint) was of considerable importance to 

upper-extremity velocity as this ‘drive’ instigates considerable motion in the sagittal 

plane, culminating in the forces produced by the legs being transferred to the fist via 

a kinetic chain. This subsequently enhanced proximal-to-distal sequencing during the 

punch, fostering a greater degree of momentum and velocity (Bartlett, 2007). 

Filimonov, Koptsev, Husyanov, and Nazarov (1985) and Verkhoshansky (1991) also 

highlighted that the legs and trunk contribute 76% and 78% respectively of the force 

(referred to as ‘energy’) generated during a punch performed by experienced boxers. 

This force was the result of ankle, knee and hip joint triple extension at the rear leg, 

deemed to be the principal influence with the force being transmitted to the fist upon 

impact with the target. 

The research of Mack et al. (2010) examined pre-impact hand velocities and 

GRF of rear-hand cross and rear hook punches completed by 42 male international-
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level amateur boxers. The hybrid dummy utilised to record punching impacts also 

contained 3 accelerometers, 3 angular rate sensors, a high-speed camera, and 

TrackEye Motion Analysis (TEMA - Photo-Sonics Inc.). These measurement devices 

documented the pre-impact hand velocities for the 2 punch types. Significant (P < 

0.05) correlations were discovered between punch force and pre-impact hand velocity 

for rear-hand cross (r = 0.391) and rear hook (r = 0.380) punches. At the conclusion 

of the study, the authors suggested that pre-impact hand velocity of both 'dominant-

side' cross and hook punches provided a greater indication of punch force than the 

sum of lower body forces (measured using a FAB system - Biosyn Systems). However, 

the inference of Mack et al. (2010) is disputed by Cabral et al. (2010) and Cheraghi et 

al. (2014) who suggest the proximal-to-distal sequencing motion observed at the 

pelvis, trunk and arm (specifically the shoulder joint) is influential to pre-impact hand 

velocities of boxers. Unfortunately, no angular velocity timings were presented in these 

studies to reinforce such conclusions. Therefore, based upon previous 

recommendations (Fortin, Lamontagne, & Gadouas, 1995; Harris-Hayes, Sahrmann, 

& Van Dillen, 2009), the most valid, reliable and comprehensive method of assessing 

the biomechanics of punching would be the combination of leg GRF measurements 

taken from a force plate combined with kinematic measurements from a 3D motion 

capture system (Lenetsky et al., 2013). 

 

2.4.4. Proximal-to-distal sequencing 

Within the assessment and analysis of biomechanics in relation to sport and 

sporting techniques, there are many aspects of movement that can be examined with 

the concurrent analysis of kinetics and kinematics facilitating a comprehensive 
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assessment of the descriptions of motion and the forces producing it. Within boxing 

for example, observing and assessing a phenomenon known as ‘proximal-to-distal 

sequencing’ (present throughout all punching techniques) facilitates the merging of 

kinetic and kinematic analysis. 

Proximal-to-distal sequencing (also known as the kinetic or kinematic chain) is 

a universally accepted biomechanical mechanism whereby coordinated segmental 

motion between the upper-body, lower-body and trunk, such as punching, occurs at 

high-velocity (Baker & Farrow, 2015). The kinetic/kinematic chain incurs the 

preservation of angular momentum during whole-body movement which in turn allows 

for the transfer of force from the ground upwards to the upper-limbs (Cheraghi et al., 

2014). During motion initiated by forces generated via the kinetic/kinematic chain, 

movement is transferred sequentially from the heavy centre points of the body such 

as the trunk (proximal) to the lighter, outermost points of the body such as the foot or 

the fist (distal) via successive joint accelerations and decelerations. In relation to its 

quantification, kinematic characteristics can be obtained through 3D motion capture 

analysis recording the technical aspects of punching while the kinetics producing the 

sequential punching motion can be analysed simultaneously via ground-embedded 

force plates. 

The concept of proximal-to-distal sequencing, whereby the end-point speed of 

a distal segment is dependent upon the motion initiated by a larger proximal segment 

of the body, is considered to be an adaptation of Bunn’s (1972) ‘summation of speed’ 

principle. This principle suggests in order to optimise the end-point speed of a distal 

body segment at the conclusion of a linked movement chain, each succeeding distal 

body segment within the chain should commence motion at the moment of peak speed 

reached by the previous proximal body segment. This in turn allows each subsequent 
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body segment to produce greater speeds than the previous segment along the 

proximal-to-distal pathway (Hirashima, Kadota, Sakurai, Kudo, & Ohtsuki, 2002). 

Where boxing is considered, the relationship between proximal-to-distal 

sequencing and maximal punching has only been investigated within the study by 

Cabral et al. (2010). It was established that a proximal-to-distal sequence was 

noticeable within the uppercut punch technique with the initial motion instigated by the 

lower limbs and subsequently travelling distally through the body to cause rotation of 

the trunk via the kinetic chain. This chain then concluded with a stretch-reflex 

contraction of the shoulder joint which the authors believed to be the result of a 

temporal dissociation of the active muscles prior to impact with the punch target. 

Furthermore, during the acceleration phase of the punch, the trunk rotated around the 

longitudinal, medio-lateral and antero-posterior axis contributing considerably to the 

angular velocities of the pelvis and trunk in addition to the generation of large hand/fist 

speeds. Additionally, the rotation of the punching arm may also be considered a critical 

element of punching based upon the often overlooked principle of the proximal-to-

distal sequence known as ‘long-axis rotation’ (Marshall & Elliott, 2000). In relation to 

Cabral et al.’s (2010) study, the angular velocities of the punching arm (1404.58 ± 

102.23º.s-1) reveal that longitudinal-axis rotation, upper arm internal rotation in 

particular, may also play a key role in the uppercut punch. 

 

2.4.5. Kinetic and kinematic differences between punch types 

 Within the present body of literature, it is noticeable there are clear kinetic and 

kinematic differences between not only the punching techniques utilised, but also the 

hand that executes the punch (i.e. lead versus rear hand). Whiting et al. (1988) 
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highlighted the lead hook generated a significantly higher (P < 0.01) end-point velocity 

than the rear-hand cross (8.0 ± 2.4 m/s and 5.9 ± 1.1 m/s, respectively), hypothesising 

that the difference was the result of the punch’s trajectory. The rear-hand cross travels 

linearly to the intended target whereas the lead hook ‘sweeps’ around the guard of the 

opponent, providing a greater range of motion and subsequent acceleration pathway. 

Viano et al.’s (2005) study determined that the lead hook to the temple 

demonstrated the greatest velocity of all the punch types assessed (11.0 ± 3.4 m/s), 

followed by the rear-hand cross to the jaw (9.2 ± 1.7 m/s), rear-hand cross to the 

forehead (8.2 ± 1.5 m/s) and the rear uppercut to the jaw (6.7 ± 1.5 m/s). Moreover, 

the authors did ascertain that lead hook punches to the temple were the punch type 

with the greatest chance of causing concussions within competitive bouts (13.8% ± 

14.3% risk of concussion) due to the location of impact which produced superior head 

acceleration impacts (71.2 ± 32.2 g) compared to the other punch types (rear-hand 

cross to jaw - 48.8 ± 20.9 g; rear-hand cross to forehead - 47.8 ± 20.1 g; rear uppercut 

to jaw - 24.1 ± 12.5 g). 

Piorkowski et al. (2011) illustrated lead and rear hook punches (10.61 ± 1.07 

m/s and 11.01 ± 2.21 m/s, respectively) generated significantly greater velocities upon 

impact with the intended target than jab and rear-hand cross punches (7.22 ± 0.72 m/s 

and 8.22 ± 1.08 m/s, respectively). Similarly to Whiting et al. (1988) and Viano et al. 

(2005), it may be hypothesised that the longer acceleration pathway allows hook 

punches to generate more acceleration than other punch types utilised within boxing. 

Indeed, the authors suggested that because the range of motion at the elbow joint is 

far less than that of the shoulder, the longer acceleration pathway of hook punches 

may allow a boxer to generate superior end-point fist velocities than with straight 

punch techniques. However, the authors also discovered that hook punches, whilst 
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generating superior contact velocities, required a greater delivery time than straight 

punches. This can be explained through hook punches having to travel along a 

sweeping pathway across the transverse plane whereas straight punches travel 

linearly to their target via the sagittal plane. This technical difference between punch 

types reveals how different techniques can be utilised in varying ways by a competitive 

boxer dependent upon the opponent and/or competitive situation. 

Kimm and Theil (2015) quantified the relationship between experience, reach 

(arm length) and jab and rear-hand cross punch velocities among experienced 

amateur boxers. Analysis demonstrated a moderate relationship between maximal jab 

velocities and boxing experience (r = 0.56), perhaps highlighting the assertion that 

boxing experience plays a principal role in the ability to deliver punches with technical 

expertise (Lenetsky et al., 2015; Smith et al., 2000). In addition, in the male boxers, 

jab punches achieved greater peak speeds than rear-hand cross punches. Similar 

results were also observed among the female boxers. The conclusions of this study 

concur with those of Cesari and Bertucco (2008), which although based within the 

sport of karate, found that experienced karatekas (categorised as ‘expert punchers’) 

were able to generate greater punch velocities than their less experienced 

counterparts (‘amateurs’). Cesari and Bertucco (2008) theorised this was the result of 

the more experienced karatekas demonstrating superior stability during punches, 

subsequently decreasing the degree of backward centre of pressure (CoP) 

displacement which may limit force production capabilities. Unfortunately, the lack of 

an upper-body kinematic assessment within this study makes it is difficult to quantify 

if the greater punch velocities observed in the expert karate practitioners were 

primarily influenced by the upper or lower extremities. 
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The punch delivery times of Kimm and Thiel’s (2015) paper contradict those 

discovered by Piorkowski et al. (2011) which ascertained the action-to-contact time of 

jab punches (587 ± 186 ms) were inferior to those noted for the rear-hand cross (553 

± 211 ms) and lead hook punches (570 ± 168 ms) in experienced boxers. This finding 

contradicts boxing coaching practice whereby the jab is considered the ‘fastest’ punch 

(i.e. lowest delivery time) in a boxer’s arsenal (Hickey, 2006). It is likely the opposing 

outcomes observed between the two studies is because Piorkowski et al. (2011) 

required subjects to maximally punch a specialised target whereas the participants 

within Kimm and Thiel’s (2015) study had no target to aim for (punches were 

performed ‘in air’). Arguably, the study of Piorkowski et al. (2011) obtained findings of 

greater practical relevance as the presence of an actual punching target will have 

allowed subjects to throw punches with greater intensity than in Kimm and Thiel’s 

(2015) study, and subsequently, more accurately replicate maximal punch intensities 

observed in competition. 

With regards to the differences between punches performed with the lead hand 

versus the rear hand, Buśko et al. (2016) discovered how the force of a straight rear-

hand punch was greater than the force of a straight lead-hand punch among both male 

and female boxers. This conclusion is consistent with the studies that have assessed 

the punch forces associated with both lead and rear-hand punching techniques (Dyson 

et al., 2005; 2007; Smith et al., 2000; Smith, 2006). It is suggested that rear hand 

punches produce superior forces than the techniques performed with the lead hand 

as a result of the longer trajectory pathway, greater trunk rotation and the influence of 

rear leg drive observed across all rear-hand punch techniques (Hickey, 1980; Smith 

et al., 2000; Smith, 2006). 
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2.4.6. Movement variability 

Though the majority of biomechanical appraisals of technique convey the salient 

features of motion, an emerging, yet important, focus concerns MV. MV is an aspect 

that considers the influences of intra- (task-to-task variation) and inter- 

(individual/human variation) movement variations on technique (Preatoni et al., 2013). 

Human MV is broadly defined as the normal variation in motor performance across 

multiple repetitions of the same task (Stergiou et al., 2006). MV is characteristic of 

human biological systems whereby individual repetitions of the same task will never 

be identical due to unique non-repetitive neural and motor patterns (Bernstein, 1967). 

Indeed, every athlete/individual possesses an array of motor, cognitive, and social 

actions that permit movement adaptability to changing environments and stimuli 

(Hadders-Algra, 2010). The movement(s) executed by an athlete/performer in 

response to a given stimulus are influenced by internal physiological processes (e.g. 

genes, ion channels, neuro-motor transmission, movement control) in addition to their 

perceived assessment of the environmental/situational context (e.g. opponents, 

weather conditions) and previous experiences unique to the individual (Bertenthal, 

Campos, & Kermoian, 1994; Farana, Irwin, Jandacka, Uchytil, & Mullineaux, 2015; 

Muller & Sternad, 2004). With experience and task-specific practice, prediction error 

can be gradually eliminated or minimized, thereby optimising the accuracy and 

efficiency of the movement pattern (Schmidt & Lee, 2005). 

Until recently, MV was deemed undesirable system ‘noise/error’, evidence of 

dysfunctional movement patterns, and an aspect of performance that decreases as 

skill proficiency increases on the basis that unwanted degrees of freedom in the 

kinematic chain are eliminated (Bartlett, 2007; Bartlett, Wheat, & Robbins, 2007; 

Langdown, Bridge, & Li, 2012). Consequently, it was assumed by biomechanists that 
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variance within sports techniques/movement patterns should be reduced in order to 

optimise the performance of a given task. Therefore, training should foster a singular, 

all-encompassing technical model (Bartlett, 2007; Newell & Corcos, 1993). However, 

recent studies have re-evaluated the role of MV and present biological variability as a 

desired functional change associated with the flexibility of the neuromusculoskeletal 

system to explore different strategies and adapt to the task/environment (Bradshaw et 

al., 2007; 2009; Keogh et al., 2007).  

With regards to the analysis of human MV measures, time-continuous data 

analysis and discrete data analysis have been proposed within the literature (Komar, 

Seifert, & Thouvarecq, 2015). Time-continuous data analysis assists in defining the 

nature of MV within a single trial (i.e. intra-trial variability) by taking into consideration 

the order/sequence of predicted data points of a movement as well as the possibility 

of ‘chaotic’/unpredictable movement behaviours (Fonseca, Diniz, & Araújo, 2014; 

Kuznetsov, Bonnette, & Riley, 2014). This may involve the employment of the 

approximate entropy (ApEn) which measures the expected outcomes of a time 

series/trial (Pincus, 1991; 2006) and recurrence quantification analysis which help to 

determine the repeatability and reoccurrence of dynamical systems over time 

(Kuznetsov, et al., 2014). The combination of these measures can help to understand 

the predictability of a time series/trial, observe how movement changes over time, and 

uncover irregular/complex time series patterns (Komar, Seifert, & Thouvarecq, 2015). 

Meanwhile, discrete data analysis compares differences between multiple 

trials, conditions or individuals (inter-subject variability) by categorising movement 

profiles as opposed to distinguishing the nature of the MV (Komar et al., 2015). If a 

number of athletes complete the same movement/task under the same conditions or 

if an individual athlete completes many trials of the same task under identical 
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conditions, movement profiles can be created based on kinetic and kinematic variables 

(Komar, Hérault, & Seifert, 2013; Seifert, et al., 2011). Discrete data analysis can be 

computed through the use of statistical methods including: 1) normalised root mean 

square which calculates mean variability and consistency of different instances of 

performance trials via time-angle plots (Chow, Davids, Button, & Koh, 2007; Hodges, 

Hayes, Horn, & Williams, 2005; Sidaway, Heise, & Schoenfelder-Zohdi, 1995); 2) 

Cauchy criterion which identifies the quantity and nature of variability by analysing 

movement patterns across space and time (Rein, 2012); 3) cluster analysis that 

merges movement data without knowledge of performer differences (e.g. gender, 

ability level) that allows for an unbiased grouping of performance trials across a large 

dataset (Komar et al., 2015); and 4) uncontrolled manifold that assists in determining 

the ‘functional’ variability of a task/movement by analysing the stability of a 

performance variable across multiple trials and how such variables compensate from 

trial-to-trial to ensure task/movement success (Rein, 2012; Scholz & Schöner, 1999). 

A dynamical system theory (DST) approach has also been recommended with 

previous literature to quantify MV and potential constraints and/or trends that 

contribute to behaviours and influence movement (Colombo-Dougovito, 2016). DST 

assists in observing and explaining developmental trends and constitutive phases of 

movement according to three constraints (individual, task and environment) (Golenia, 

Schoemaker, Otten, Mouton, & Bongers, 2017). Understanding how these constraints 

interact with one another to create spontaneous behaviours (i.e. motor movement) 

and coordinative patterns can help to explain inter-subject MV (Colombo-Dougovito, 

2016), identify different movement trends within a particular skill (Golenia et al., 2017), 

and characterise ranges of coordination patterns used to complete a movement/motor 

task (Preatoni et al., 2013). DST infers that MV plays a functional role in motor 
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movement and may be useful in interpreting the range of possible patterns and 

transitions between the same or different motor tasks via two methods: (1) angle–

angle plots; and (2) position–velocity plots (Preatoni et al., 2013). Angle-angle plots 

can help to identify coordination changes and relative coordinative invariances 

(Heiderscheit, Hamill, & Van Emmerik, 2002; Wheat & Glazier, 2006), whilst position–

velocity plots detect the position and velocity of a joint or segment relative to each 

other that can help to characterise single joint or segmental joint coordination (Hamill, 

Haddad, Heiderscheit, Van Emmerik, & Li, 2006; Hamill, Van Emmerik, Heiderscheit, 

& Li, 1999; Van Emmerik et al., 1999). 

Previous research has also endorsed more common methods of movement 

analysis, including 95% confidence intervals (95% CI) for case studies (n = 1) and root 

mean square difference (RMSD) for experimental studies with a small number of 

participants (n ≤ 5) (Mullineaux, 2000). Furthermore, canonical correlation analysis 

has been recommended to examine of inter-trial variability across different time points 

of movement involving the upper-extremities and multiple degrees of freedom (DoF) 

(Krüger, Straube, & Eggert, 2017). Moreover, typical error (TEM), intra-class 

correlation coefficient (ICC), standard error of mean (SEM) or coefficient of variation 

(CV%) are also used to quantify MV across multiple performance trials, groups of 

individuals or testing occasions (Atkinson & Nevill, 1998; Hopkins, 2000). CV% is 

perhaps the most prevalent statistical measure utilised within the literature as it can 

be an effective way of determining both intra- and inter-individual MV (e.g. Hausdorff, 

Zemany, Peng, & Goldberger, 1999). Indeed, whilst traditional CV% analysis is 

practical for calculating and understanding degrees of inter- and intra-subject 

variability between movement trials (Preatoni et al., 2013), it may however contain 

variable percentages of both technological error (e.g. motion capture system 
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arrangement, marker placement, environmental changes) and biological movement 

variability (BCV%) (i.e. unique non-repetitive neural and motor patterns - Rodano & 

Squadrone, 2002). Though the separation of technological error and BCV% is not 

needed when determining the reliability of performance measures, it is not ideal for 

the quantification of ‘true’ MV (Keogh et al., 2007). Consequently, previous research 

(Bradshaw et al., 2007; 2009; Farana et al., 2015; Keogh et al., 2007) proposed a 

method of estimating biological variability (BCV% = CV% - SEM%) via intra-individual 

analysis that accounted for technological error (SEM%) by subtracting the SEM% from 

the traditional CV% values. Indeed, Bradshaw et al. (2007) reported that traditional 

CV% analysis inflated MV measures by as much as 72% during the kinematic analysis 

of a sprint start, and subsequently, utilised SEM% to estimate any technological 

error/noise and traditional CV% to account for the summation of technological 

error/noise and MV. Such analysis has also been used to assess golf swings (Keogh 

et al., 2007), hand positions among gymnasts performing a ‘round off’ manoeuvre 

(Farana et al., 2015) and running (Queen, Gross, & Liu, 2006). 

 Within the current literature, evidence has demonstrated that experienced 

boxers exhibited intra- and inter-trial movement variance when punching (Orth, van 

der Kamp, & Rein, 2018). The authors concluded that this resulted from boxers 

manipulating their technique (via upper-limb kinematics and velocities) in order to 

adapt to their opponent and/or to ensure that their offensive manoeuvres were 

unpredictable. Conversely, Lenetsky et al. (2017) reported small-to-moderate within-

subject variability for the impact kinetics of jab (12%), rear-hand cross (9.3%), lead 

hook (6.6%), and rear hook (7.7%) punches, respectively, among ‘trained’ boxers, 

compared to ‘untrained’ boxers (jab - 13.3%, rear-hand cross - 10%, lead hook - 9.3%, 

and rear hook - 9.4%). The authors concluded that the ‘trained’ boxers exhibited lower 
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movement variance across all punch types due to their increased familiarity with the 

techniques subsequently leading to a decrease in movement ‘error’. Turvey (1990) 

states how MV is evident when punching due to the dynamic nature of opponents and 

training equipment utilised, such as punch bags, speed bags, and hand pads. Indeed, 

when punching a target, boxers must concurrently judge the distance to the target, 

select the specific technique to utilise, and assess how forcefully to perform the punch 

whilst the opponent/target is still within ‘punching range’ (Choi & Mark, 2004; Hristovski 

et al., 2006), suggesting MV might actually benefit performance. 

The effect of distance on a boxer’s striking pattern has also been shown to 

change boxer’s technique/movement patterns and punch selection in relation to the 

location of the desired target (Hristovski et al., 2006). At greater distances, boxers 

favoured straight punches, whereas hooks and uppercuts were the punches of choice 

closer to the target. This highlights how a boxer’s perception of the targets’ relative 

position influences which punch is executed and over what trajectory (i.e. lead hook 

or lead uppercut at mid-range), with Davids et al. (2006) and Hristovski (2006) adding 

how a boxer’s arm segment dimensions (limb lengths), pre-fight strategy, fighting 

‘style’, and perceived efficiency (perception of own performance capability) are factors. 

Furthermore, experience and skill level have also been shown to influence the 

consistency of actions and techniques across various sports comprising dynamic, full-

body movements (Button et al., 2003; Hanford, 2006; Wagner et al., 2012). 

Consequently, the amalgamation of these variables foster high levels of intra- and 

inter-limb variability during punching (Davids et al., 2006; Seifert, Button, & Davids, 

2013), and ought to therefore be appraised/considered during biomechanical 

analyses. 
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Given its role in sports performance and maximal punching in particular, it is 

surprising that MV has received limited attention to date. Also, given the 

unpredictability of opponents and the ballistic nature of maximal punching itself, high 

MV could provide boxers with purposeful solutions to what is a complex environment. 

The integration of internal (e.g. judging of distance, punch selection and force 

application) and external (e.g. technical strengths and weaknesses of the opponent, 

pre-fight strategies, and fighting ‘style’ of the opposing boxer) characteristics of 

competition suggests intra- and inter-limb variability during punching could enhance 

performance by affording boxers with opportunities to adapt their punching technique 

according to demands posed during competition (Davids et al., 2006; Orth et al., 2018; 

Seifert et al., 2013).  

Recognising the degree of MV associated with different punch types will be 

valuable for identifying the occurrence of meaningful changes in maximal punching 

characteristics following technique- or strength-related interventions, allowing coaches 

and boxers to detect worthwhile training practice- and/or intervention-based changes 

in performance, and therefore, facilitate the monitoring of a boxer’s progression 

(Hopkins, 2004; Hopkins, Hawley, & Burke, 1999; Preatoni et al., 2013). 

 

2.4.7. Data collection and processing in punching biomechanics  

 In order for biomechanists to collect accurate data, make comparisons between 

participants and confidently test research hypotheses, a study must be designed and 

controlled effectively. Smith (2012) suggests that a suitable experimental design, data 

collection methods and processing procedures are essential to obtain data of a high 

quality, in addition to minimising potential threats to external and internal validity. Due 
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to the high speed and dynamic nature of punching, data needs to be tracked, sampled 

and processed adequately to accurately capture the motion of the markers. Therefore, 

a comprehensive insight into the biomechanics of punching requires the combination 

of kinematic and kinetic data to quantify the motion and velocities of the upper-limbs, 

the forces produced by the lower-limbs and how these forces are distributed between 

the lead and rear leg during different punch types. 

 

2.4.7.1. Motion capture 

 In recent years, boxing/punching kinematics have been assessed through the 

use of 3D motion capture systems (Cabral et al., 2010; Piorkowski et al., 2011) as 

opposed to 2D systems utilised in earlier research (Atha et al., 1985; Whiting et al., 

1988). Although 3D motion capture analysis often restricts data collection to a 

laboratory setting (under unlikely conditions in comparison to actual competition), the 

positive aspects of this method (high image quality, comprehensive marker tracking, 

and high-speed data collection) arguably surpass its limitations in relation to external 

validity (Smith, 2012). Due to the ballistic nature of punching (which comprises 

considerable velocities and accelerations), a high video frame rate is essential to 

accurately capture kinematic data associated with such dynamic actions. Punch 

kinematics have been captured at frame rates between 200-250 Hz (Cabral et al., 

2010; Cheraghi et al., 2014; Piorkowski et al., 2011) in boxing, and between 100-240 

Hz in other combat sports (De Quel & Bennett, 2014; VencesBrito et al., 2011). It is 

difficult to know whether the sample rates used in previous research are sufficient to 

optimally capture the motion of maximal punching, which lasts between 50-300 ms 

(Aagaard et al., 2002; Cheraghi et al., 2014; Whiting et al., 1988), but it’s plausible to 
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suggest that accurate kinematic measurements of maximal punches require a high 

frequency frame rate in order to sufficiently capture data with minimal noise 

interference. This suggestion can be related to the findings on baseball pitching by 

You, Siy, Anderst, and Tashman (2001) which propose a frame rate of 250 Hz is 

suitable for assessing the upper extremities of sporting movements performed at high 

speeds. Moreover, as a baseball pitch, from front foot contact to ball release, exhibits 

similar movement speeds to a punch (~150 ms, Stodden, Campbell, & Moyer, 2008), 

it is therefore reasonable to suggest that a capture frame rate of 250 Hz would be 

appropriate for analysing the kinematics of punching. 

 

2.4.7.2. Force measurement devices 

 Within the body of literature concerning boxing, martial arts and combat sports 

in general, force platforms have been used sparingly to investigate the forces 

produced during punches. Considering the accuracy, clarity, ease of application, and 

in some cases portability of force platforms, this is somewhat surprising. Generally, 

force platforms within combat sport research have been used to test GRF associated 

with the punches of boxers (Mack et al., 2010; Su et al., 2013) and karatekas (Cesari 

et al., 2008; Gulledge et al., 2008).  

In addition to GRF, force platforms have been adapted within research to 

assess the impact forces associated with punches (Loturco et al., 2016). Devices such 

as punch bag dynamometers utilising water displacement (Fritsche, 1978; Joch et al., 

1981), a ballistic pendulum with a force transducer (Atha et al., 1985), a uni-axial strain 

gauge system (Karpilowski et al., 1994), punch bag-embedded accelerometers 

(Baagrev & Trachimovich, 1981; Broker & Crowley, 2002; Buśko et al., 2016), boxing-
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specific dynamometers (Čepulėnas et al., 2011; Dyson et al., 2005; 2007; Hlavačka, 

2014; Smith et al., 2000; Smith, 2006), hybrid punch dummies (Viano et al., 2005; 

Walilko et al., 2005) and boxing glove-embedded force sensors (Chadli et al., 2014; 

Pierce et al., 2006) have also been utilised with varying degrees of accuracy. The 

diverse range of force measurement devices utilised in boxing-related punching 

research mean it is difficult to compare data on a study-by-study basis as very few 

studies tested their specific devices for validity and/or reliability. Consequently, the 

optimal measurement criteria for assessing the impact force of a boxer’s punch are 

yet to be established. 

  

2.4.7.3. Data smoothing and digital filtering 

 As previously alluded to, it is paramount that biomechanists utilise a high 

sampling rate when assessing motion/movements performed at high speeds. Previous 

research (Smith, 2012) suggests that dynamic motion should be sampled at a rate ten 

times greater than the highest anticipated frequency in the signal rather than the 

sampling theorem recommendation of using a sample rate twice that of the highest 

anticipated frequency (Challis, 2008). Once data has been collected, it is essential that 

it is smoothed (low-pass filtered) in order to eliminate any inaccuracy caused by 

random errors (noise) which can conceal the true values of interest (Challis, 2008). 

Noise is amplified when derivatives are calculated from raw displacement data and 

contaminates velocity and acceleration data. This is commonly achieved through the 

use of low-pass filtering which assists in eliminating any high-frequency noise and 

helps to ‘smooth’ data, which leaves the genuine signal unaffected to some degree 

(some noise will still remain in the signal). Various methods of data smoothing can be 

implemented, including: frequency domain techniques (e.g. Hatze, 1981), polynomial 
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smoothing (e.g. Pezzack, Norman, & Winter, 1977), splines functions (e.g. Woltring, 

1986) and digital filters (e.g. Butterworth filter - Winter, Sidwall, & Hobson, 1974), with 

the latter considered the ideal approach (Smith, 2012). 

More specifically, low-pass Butterworth filters are common due to their 

simplicity and effectiveness at removing high frequency noise (Erer, 2007). 

Butterworth filters are able to separate time-displacement curve components of 

markers based upon whether the components are located above or below a selected 

cut-off frequency. This method, as with all filtering methods, leaves the true signal 

unaffected whilst accommodating noise located above and below the cut-off frequency 

(Milner, 2008; Sinclair, Taylor, & Hobbs, 2013). The selected cut-off frequency is 

paramount to the efficacy of kinematic analyses since if it is too low, the curve can 

become over-smoothed, and if too high, noise will still remain in the curve (Sinclair et 

al., 2013). Visual inspection has often been a method of determining the level of 

filtration that data is subjected to, although the repeatability and impartiality of this 

approach is questionable (Derrick, 2004). One effective method of data filtering is the 

use of residual analysis. Advocated by Winter (2009), residual analysis filters raw data 

at various cut-off frequencies and determines any residuals (differences between 

observed values and predicted values of a dependent variable) located between 

filtered and raw data. This assists biomechanists in selecting a pertinent cut-off 

frequency with the concession that signal distortion and level of noise are comparable. 

However, this method is not without issues with suggestions by previous authors that 

cut-off frequencies derived from residual analysis alone are generally too low, 

especially when a high sampling frequency is used, which may cause over-smoothing 

(Smith, 2012).  
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Accordingly, it is imperative that biomechanists are aware of how different 

smoothing processes and cut-off frequencies can influence raw data in order to select 

a suitable technique that will accurately smooth data without misrepresenting the true 

signal. For sporting actions that are explosive and dynamic in nature, it has been 

advocated that the selected cut-off frequency should be as high as possible in order 

to acquire accurate joint kinetic and kinematic data whilst minimising potential errors 

(Bezodis, Salo, & Trewartha, 2011).  

Signal errors can occur as a result of various factors including surface marker 

movement, noise in GRF measurements, inaccurate joint models and inaccurate 

marker locations (Smith, 2012). Despite the wide array of potential errors, using 

applicable signal processing techniques can reduce the chances of errors influencing 

collected data whilst implementing cluster sets and global optimisation methods have 

also been suggested to assist in eliminating errors associated with incorrect marker 

locations (Rao, Amarantini, Berton, & Favier, 2006; Riemer, Hsiao-Wecksler, & Zhang, 

2008).  

 

2.5. Physical performance-related aspects of punching 

2.5.1. Physical performance-related characteristics associated with maximal punching 

performance 

Despite boxing commonly being termed informally as the ‘sweet science’, only 

since 2002 has research provided scientific evidence relating to the physical and 

physiological requirements of the sport (Arseneau et al., 2011). Prior to this, coaches 

and boxers were reliant upon trial and error approaches to training when attempting 
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to augment technical skills and physical/physiological qualities (Bourne et al., 2002). 

Key physical performance-related characteristics of amateur boxing performance, 

such as strength and power (Loturco et al., 2016; Obmiński et al., 2011; Ramírez 

García et al., 2010), aerobic capacity (Arseneau et al., 2011; Bružas et al., 2014) and 

anaerobic threshold (Guidetti et al., 2002), in addition to comprehensive physiological 

profiles (Del Vecchio, 2011; Chaabene et al., 2015) have now been investigated. Prior 

to this contemporary body of research, boxers and coaches have often been reliant 

upon experimental approaches to training when attempting to augment technical skills 

and physical/physiological qualities. Nonetheless, there remains a lack of information 

with regard to maximal punching performance. Markovic et al. (2016) corroborates this 

notion by stating how knowledge of the function of specific muscle groups and/or body 

segments during punching still remains vague, hindering the optimal development of 

specific exercise interventions that can be implemented to enhance punching 

performance. 

An examination of amateur boxing competition reveals that successful 

performance requires a boxer to possess a spectrum of physical and physiological 

characteristics. In particular, the ability to punch at maximal intensity necessitates a 

boxer be able to demonstrate a multitude of these physical traits simultaneously 

across the scheduled 3 x 3-minute rounds at elite level. It therefore seems imperative 

the various physical performance-related characteristics associated with maximal 

punching are firstly understood and then subsequently enhanced through sport-

specific training interventions (Bishop, 2008; Čepulėnas et al., 2011). Based upon 

current evidence, the principal physical performance-related traits influencing maximal 

punching performance comprise muscular strength and muscular power. 
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2.5.1.1. Muscular strength 

Described as the ability of the neuromuscular system to produce force against 

external resistance (Stone, Stone, & Sands, 2007), muscular strength is an essential 

physical performance-related characteristic of successful sports performance (Bompa 

& Carrera, 2005), particularly in contact sports (McMaster, Gill, Cronin, & McGuigan, 

2014). Muscular strength, when expressed maximally, denotes the greatest 

application of force during a single maximal muscular contraction and forms an 

essential part of dynamic movement and motion, especially those observed within 

combat sports (James et al., 2016a). Despite the mechanics of punching and the 

technical competency of a boxer being vital components of punching force and velocity 

production (Hickey, 1980), enhancing a boxer’s maximal strength can influence 

additional physical attributes pertinent to boxing competition. Such attributes include 

punch power (Čepulėnas et al., 2011; Del Vecchio et al., 2019; Hlavačka, 2014), 

punch impact force (Loturco et al., 2016), punch acceleration (Loturco et al., 2014), 

punch velocity (Dengel et al., 1987; Solovey, 1983), and muscular power (Cormie, 

McGuigan, & Newton, 2011a). Moreover, muscular strength is strongly associated with 

force-time characteristics (rate of force development (RFD); external mechanical 

power) alongside general (e.g. jumping; sprinting; throwing) and sport-specific skill 

performance (Suchomel et al., 2016). 

Muscular strength of both the upper and lower limbs is imperative to success in 

boxing and regarded as an essential component of punching performance (Chaabene 

et al., 2015; Loturco et al., 2014). It can be further dissected into absolute and relative 

strength, both of which play a role in combative sport. Absolute strength is regarded 

as the peak voluntary force produced during a maximal muscular contraction 

regardless of body mass, whereas relative strength signifies the amount of force 
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generated by an athlete, divided by their body mass (Stone, Sands, & Pierce, 2005). 

Subsequently, due to amateur boxing being a weight-governed sport, relative 

muscular strength is arguably of greater importance than absolute muscular strength. 

Therefore, as relative strength can be considered as a critical component of boxing 

performance facilitating force production and positively influencing other physical 

traits, understanding how to enhance a boxer’s strength-to-body mass ratio is 

essential. 

Muscular strength (both isometric and dynamic) is influenced by an athlete’s 

neural drive efficiency (McBride, Triplett-McBride, Davie, & Newton, 2002), 

intermuscular coordination (Sale, 2003) and cross-sectional area (Narici, Roi, 

Landoni, Minetti, & Cerretelli, 1989). There exists strong evidence that maximal 

muscular strength is a key discriminator of successful combat sport performance (i.e. 

stronger fighters are generally more successful than weaker combatants) (James et 

al., 2016a; 2016b), with attempts having been made to determine the importance of 

both isometric (Guidetti et al., 2002; Khanna & Manna, 2006; Loturco et al., 2016; 

Ramírez García et al., 2010) and dynamic muscular strength (Loturco et al., 2014) to 

punching performance. Guidetti et al. (2002) reported a strong correlation (r = 0.87) 

between hand grip strength, boxing competition ranking, and competitive success 

among amateur boxers. Comparably, the hand grip dynamometer strength test was 

proposed by Ramírez García et al. (2010) and Čepulėnas et al. (2011) to be a suitable 

method of monitoring muscular strength adaptations in amateur boxers. Similarly, 

Khanna and Manna (2006) suggested that isometric grip and upper back strength are 

important as both variables positively affect the forcefulness of punches and can 

diminish upper extremity injury risk. Loturco et al. (2016) highlighted a correlation 

between lower-body isometric muscular strength and straight punch impact forces in 
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elite amateur boxers, with jab (r = 0.68-0.69) and rear-hand cross (r = 0.73-0.83) 

impact forces strongly associated with maximal isometric strength on the half-squat 

exercise in 15 elite amateur boxers. 

However, isometric strength measures are reported to seldom correlate with 

explosive/dynamic performance (Anderson et al., 1991; Coulson & Archer, 2015; 

Rutherford & Jones, 1986; Tanner & Gore, 2013), particularly with reference to striking 

in combat sports (James et al., 2016a). Indeed, the limited movement specificity and 

disparate motor unit activation patterns between isometric and dynamic/explosive 

actions means velocity-based measures of performance (e.g. joint velocities) are not 

adequately associated with isometric strength measures (Wilson et al., 1995). 

Therefore, as dynamic tests provide a better illustration of the dynamic components 

comprising athletic performance (Frost, Cronin, & Newton, 2010), it appears that 

assessing strength dynamically provides a better representation of the influence of 

muscular strength upon punching performance, particularly for the upper-body 

(Loturco et al., 2016). 

Despite the use of isometric strength tests, Loturco et al.’s (2016) suggestion 

that an association exists between lower-body muscular strength and force production 

capabilities in relation to maximal punching performance is supported by findings 

within previous research. Various authors (Cheraghi et al., 2014; Filimonov et al., 

1985; Lenetsky et al., 2013; Turner et al., 2011) noted how the generation of force via 

lower body triple extension (hip, knee and ankle) is critical to the degree of force 

transmitted by the fist upon impact with a target. Meanwhile, the lack of a relationship 

between upper-body strength and punching force could be deemed surprising, 

especially considering prior recommendations to enhance this trait within previous 

literature (Chaabene et al., 2015; Ruddock, Wilson, Hembrough, & Winter, 2016; 
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Turner et al., 2011). Previous research has also illustrated that a positive relationship 

exists between dynamic muscular strength and punch acceleration. Loturco et al. 

(2014) established muscular strength on bench press and squat machine 

assessments correlated (r = 0.65-0.79) with straight rear-hand punch acceleration 

across all karatekas for all punch trials. The authors concluded both upper- and lower-

body maximal strength was predictive of punching acceleration across all punch 

conditions, suggesting that augmenting both upper-body and lower-body maximal 

muscular strength could promote increases in punching performance. 

 

2.5.1.2. Muscular power 

 Muscular power is important to successful performance across various sports 

(Cormie et al., 2011b), particularly amateur (Chaabene et al., 2015; Lenetsky et al., 

2013) and professional (Halperin, Hughes, & Chapman, 2016b) boxing. Determined 

as the product of force and velocity during a maximal effort muscular contraction (the 

degree of muscular power produced) is dependent upon their neuromuscular system’s 

efficiency at recruiting motor units, the speed at which sarcomere within the utilised 

musculature shortens, and the external load applied (James et al., 2016a; Suchomel 

et al., 2016). The greater the external load, the greater the degree of force required to 

perform ballistic/explosive motions, meaning velocity decreases as load increases 

(Cormie et al., 2011a). Consequently, muscular power is governed by a continuum 

that encompasses forceful actions with high loads (i.e. grappling/wrestling) and 

velocity-based motion with minimal loads (i.e. striking) at opposing ends (Figure 2.7) 

(James et al., 2016a). 
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Figure 2.7. Example power profile of mixed martial arts competitors based upon combat sport history and dominant strategy using 
the force-velocity curve continuum (Vmax = maximal velocity; Fmax = maximal force - James et al., 2016a; p. 1543). 
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As the action of punching is extremely dynamic, high-level boxing performance 

requires considerable levels of muscular power in both the upper and lower limbs to 

optimise punching performance (Chaabene et al., 2015). Therefore, successful 

punching is often dependent upon the ability to generate force rapidly in response to 

an observed or anticipated stimulus during competition. The rapid generation of force 

is often classified as rate of force development (RFD) and is essential to striking within 

combat sports (Tack, 2013). RFD characterises the greatest slope across the force-

time curve (Wilson & Murphy, 1996) and accurately reflects the dynamic nature of 

athletic performance (Frost et al., 2010). In relation to boxing, a competitor is only able 

to manipulate resultant force by influencing the acceleration of the movement given 

mass remains unchanged during performance (Thomson, 2016). Aagaard et al. (2002) 

and Cheraghi et al. (2014) identify RFD as being essential within boxing with 

successful punches (i.e. punches that strike the intended target) having an execution 

time between 50-300 ms. Meanwhile, other research noted single punch execution 

times between 553-716 ms (jab - 587 ± 166 ms; rear-hand cross - 553 ± 211 ms; lead 

hook - 570 ± 168 ms; rear hook - 716 ± 305 ms) (Piorkowski et al., 2011). As human 

musculature is unlikely to produce a maximum force within 300 ms (Aagaard et al., 

2002), the use of RFD assessments would appear useful for boxers seeking to assess 

their rates of force production capabilities. However, it is crucial that RFD assessments 

are as sport-specific as possible, unlike to the often utilised isometric tests, which as 

previously alluded to, have a limited relationship to dynamic athletic performance 

(Murphy & Wilson, 1996). Boxing-specific RFD assessments have been completed 

within previous research (Obmiński et al., 2011), establishing how shot put distance 

using a 4 kg medicine ball/put strongly correlated (r = 0.83) with the force of rear-hand 

cross punches in experienced Polish boxers. 
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In addition to RFD, previous research has also highlighted how boxers 

instinctively utilise the stretch-shortening cycle (SSC), particularly at the elbow and 

shoulder joints, during rear-hand cross (Cheraghi et al., 2014), jab, lead hook and rear 

hook punches performed at maximal intensity (Piorkowski et al., 2011). Comprising a 

forceful concentric muscular contraction following a rapid eccentric contraction of 

agonist muscles (Bartlett, 2007; Komi & Nicol, 2010), the SSC underpins punching 

among elite mixed martial artists (McGill et al., 2010). McGill et al. (2010) highlighted 

the existence of a relation phase separated by a ‘double peak’ in muscular 

stiffness/tension of the trunk musculature at both the initiation of a punch and at impact 

with a target (referred to as a contraction-relaxation-contraction sequence). This ‘pre-

loading’ of specific musculature causes a rapid bout of muscular tension, leading to a 

more forceful punch whilst also maximising the acceleration path towards the 

opponent/target (Cheraghi et al., 2014; Yessis, 1994). 

Contemporary research has established how lower-body muscular power is 

strongly associated with punch impact force among elite amateur boxers (Loturco et 

al. 2016) and punch impact power among amateur combat athletes (Del Vecchio et 

al., 2019). Furthermore, the same authors also noted similar associations regarding 

upper- and lower-body power and punch acceleration among elite karatekas, 

respectively. Interestingly, the authors determined up to 65% of the variation in punch 

acceleration could be explained via strength and power parameters, with technical 

competency accounting for the remaining variation. This was corroborated by Loturco 

et al. (2016) whereby vertical jumping ability (squat jump (SJ); counter movement jump 

(CMJ)) was accountable for ~75% of force magnitudes exhibited by elite boxers during 

maximal jab and rear-hand cross punches. The conclusions of Loturco et al. (2016) 

corroborate the view of Chaabene et al. (2015) that successful boxing performance 



   

92 
 

requires competitors to demonstrate considerable upper- and lower-body muscular 

power to optimise punching performance. This is particularly important given this 

physical trait is strongly associated with the kinematic and kinetic characteristics of 

jabs and rear-hand crosses, the most prevalent punch types observed within 

competitive boxing (Davis et al., 2013; 2015; 2018; Slimani et al., 2017). It is therefore 

likely that, technical skills aside, boxers possessing superior levels of muscular power 

have a greater likelihood of causing damage to their opponent, reinforcing the need 

for them to train such qualities. 

 

2.5.1.3. Speed 

Speed is defined as distance divided by time and can refer to the movement of 

a body part such as the hand in boxing or to a whole-body movement such as sprinting 

(Young & Sheppard, 2011). Coulson and Archer (2015) assert how both upper- and 

lower-limb speed are essential components of boxing as the act of punching requires 

dynamic whole-body coordination, suggesting the ability for the upper-limbs to rapidly 

reach peak speeds following the application of force by the lower-body is critical to 

successful punching (Cheraghi et al., 2014). Coaching texts often refer to speed being 

the primary attribute that makes the difference between winning and losing a contest, 

regardless of a boxer’s fighting style or technique (Barnes, 2005), though this 

statement is yet to be formally addressed in the scientific literature. Verkhoshansky 

and Siff (2009) state successful performance in boxing is reliant on the speed of 

technique execution as boxers need to achieve peak upper-limb speeds rapidly in 

order to land successful, damaging strikes (Adamczyk & Antoniak, 2010). Previous 

research has noted the faster a punch is executed, the greater its knock-out potential 
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resulting from the total impact kinetic energy of the strike being exponentially 

associated to its speed (La Bounty et al., 2011). Indeed, speed plays a supporting role 

to muscular power production based upon the force-velocity relationship (F-V) and the 

ability to produce high degrees of force in minimal time, such as punching (Cormie et 

al., 2011a). 

 

2.5.2. Physical performance-related measurement methods 

2.5.2.1. Muscular strength 

The most common practices for determining muscular strength are through the 

use of maximal voluntary contractions for isometric strength and/or one-repetition 

maximum (1RM) tests for dynamic strength. Isometric tests are commonly performed 

utilising dynamometers, cable tensiometers or strain gauges which have all 

demonstrated good reliability in both single and multi-joint test protocols (Wilson & 

Murphy, 1996).  

In terms of dynamic muscular strength, 1RM tests utilising multi-joint free weight 

exercises are most commonly observed, whereby a maximum strength score is 

achieved once an athlete is unable to complete a lift at a certain load or cannot 

complete a lift with correct technique. The benefits of utilising 1RM assessments are 

that muscular strength can be established under dynamic conditions in movements 

potentially similar to those performed in competition, a feat that is challenging to 

replicate with isomeric strength tests (Tanner & Gore, 2013). Moreover, the 1RM test 

itself has proven to be reliable in quantifying the level of dynamic muscular strength 

(Seo et al., 2012), and due to the dynamic nature of punching, 1RM assessments 
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appear more appropriate than isometric assessments for boxers and other combat 

athletes that utilise striking techniques. 

The most commonly observed 1RM exercises utilised within research to assess 

the maximal strength of the upper- and lower-body are the bench press and back 

squat. These exercises have been shown to be reliable measurements for 1RM testing 

(Flansbjer & Lexell, 2010; Levinger et al., 2009; Tagesson & Kvist, 2007), with bench 

press test-re-test intraclass correlation coefficients (ICC) of 0.94-0.99 (Bellar et al., 

2011; Rhea, Ball, Phillips, & Burkett, 2002; Senna et al., 2016) and 0.7-> 0.9 for the 

back squat (Augustsson & Svantesson, 2013; Comfort & McMahon, 2014; Ritti-Dias 

et al., 2011; Soares-Caldeira et al., 2009). 

 

2.5.2.2. Muscular power 

 Muscular power is commonly reported as either a peak or mean value within 

the literature. Peak power documents the maximum power value immediately 

achieved during a forceful action (Dugan et al., 2004) whereas mean power is typically 

noted as the average of sampled time points usually taken from the initiation of the 

concentric phase of a lift until the point at which peak power occurs (James et al., 

2016a). In order to optimally assess muscular power, it is recommended peak power 

scores be documented using ballistic actions that minimise any form of deceleration 

as peak power data demonstrates superior correlations to ballistic performance in 

comparison to average power data (Dowling & Vamos, 1993; Dugan et al., 2004; 

Harmen, 1990). Furthermore, ballistic actions provide the greatest power outputs 

compared to other exercises/movements (Newton et al., 1996). Consequently, ballistic 
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exercises are commonly utilised to quantify the components of muscular power for 

both the upper- and lower-body. 

Within combat sports, upper-body muscular power has predominantly been 

assessed using the bench press throw (da Silva, Simim, Marocolo, Franchini, & da 

Mota, 2015; Drid et al., 2015), traditional bench press (Fagerlund & Häkkinen, 1991; 

García-Pallarés, López-Gullón, Muriel, Díaz, & Izquierdo, 2011; Roschel et al., 2009) 

or a combination of both exercises (Loturco et al., 2014; 2016) using various loads 

across the force-velocity curve. The bench throw assessment is considered to be a 

reliable and valid test for measuring upper-body muscular power (Alemany et al., 

2005), with a loading parameter of 30% 1RM seeming to be the most effective at 

inducing peak power output (Alemany et al., 2005; Falvo et al., 2006; Newton et al., 

1997; Thomas et al., 2007), particularly among karatekas (Roschel et al., 2009). In 

combat sport athletes, loads of around 30% 1RM are suggested to be more effective 

than higher loads (e.g. 60% 1RM) as a result of velocity-based power being more 

important than force-based power in order to land effective strikes (James et al., 

2016a; Roschel et al., 2009). It is likely this argument can be made for boxers in 

particular, although the new rules of amateur boxing encourage the use of forceful 

punches whilst karate still uses a point-based system that promotes the use of single 

strikes executed at high velocity. It has also been suggested that upper-body power 

can also be tested reliably through the use of field-based tests, such as various 

medicine ball throws (Harasin, Dizdar, & Markovic, 2006; van den Tillaar & Marques, 

2013) and, more specifically to boxing, shot putting (Obmiński et al., 2011).  

For the assessment of lower-body muscular power, loaded jump squats 

(Loturco et al., 2014; 2016) and back squats using various loads across the force-

velocity curve (García-Pallarés et al., 2011; Loturco et al., 2014; Roschel et al., 2009) 
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are prevalent within the combat sport literature. Additionally, ballistic bodyweight 

exercises such as SJs (Fagerlund et al., 1991; Loturco et al., 2014; 2016; Roschel et 

al., 2009; Tabben et al., 2014) and CMJs (Drid et al., 2015; Loturco et al., 2014; 2016; 

Tabben et al., 2014) have also been used to assess lower-body power effectively. 

Similar to the bench throw, the loaded jump squat is a reliable test for the assessment 

of lower-body muscular power (Alemany et al., 2005). Research has reported peak 

power in the jump squat is achieved at loads equating to 0% of an athlete’s 1RM (i.e. 

bodyweight with no added external load) (Bevan et al., 2010; Cormie et al., 2008; 

Dayne et al., 2011; Jimenez-Reyes et al., 2015). However, it has also been suggested 

peak power occurs at various loads across the force-velocity continuum ranging from 

10% 1RM (Stone et al., 2003), 20% 1RM (Turner, Unholz, Potts, & Coleman, 2012), 

30% 1RM (Alemany et al., 2005), 48-63% 1RM (Baker, Nance, & Moore, 2001), 60% 

1RM (Alcaraz, Romero-Arenas, Vila, & Ferragut, 2011), 50-80% RM (Sleivert, Esliger, 

& Bourque, 2002) and 80% 1RM (McBride, Haines, & Kirby, 2011) in the jump squat. 

Such variance may stem from the varying athletic populations used to quantify these 

peak power percentages, with the higher 1RM loads likely producing peak power in 

contact sport athletes (i.e. rugby league players, American football players), and the 

lower 1RM loads suiting athletes who do not have to overcome external loads/inertia 

as part of their sport (e.g. track and field competitors). This therefore suggests that 

lighter 1RM loads may be more suitable for quantifying jump squat peak power of 

amateur boxers. 

In order to quantify an athlete’s expression of power during ballistic exercises 

such as the jump squat and bench throw, the use of field-based testing devices is now 

common practice in the absence of laboratory equipment. Tri-axial accelerometers are 

prevalent having been demonstrated to be valid and reliable for estimating both lower 
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(Bampouras, Relph, Orme, & Esformes, 2013; Bubanj et al., 2010; Castagna et al., 

2013) and upper-body (Comstock et al., 2011) power. Additionally, the use of a single 

linear position transducer (LPT) also provides valid and reliable estimations of power 

(Crewther et al., 2011; Cronin, Hing, & McNain, 2004; Drinkwater, Galna, Mckenna, 

Hunt, & Pyne, 2007). Of the options available to a researcher, it appears tri-axial 

accelerometers are the optimal choice given their high reliability and validity alongside 

their ability to measure both upper- and lower-body power accurately. 

In terms of laboratory-based assessments, it is common to see the use of rotary 

encoders to measure muscular power. Rotary encoders are devices that attach to 

conventional RT equipment (e.g. a barbell) which then utilise a rotating wheel tether 

to convert motion (i.e. speed of movement) into an analogue reading (Fernandes, 

Lamb, & Twist, 2016; Jennings, Viljoen, Durandt, & Lambert, 2005). Rotary encoders 

have been used to measure muscular function (Fry, Schilling, Weiss, & Chiu, 2006), 

muscular power (Jennings et al., 2005) and bar velocity (Stock, Beck, DeFreitas, & 

Dillon, 2011), whilst also demonstrating reliability when assessing both upper-body 

(ICC = 0.97; 95% CI = 0.95-0.98) and lower-body (ICC = 0.97; 95% CI = 0.95-0.98) 

power (Jennings et al., 2005). Consequently, the use of laboratory and/or field-based 

assessments provides the opportunity to accurately quantify muscular power among 

athletes.  

 

 

 

2.5.2.3. Speed 
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Sprints over a short distance (i.e. 10 m) from a standing start are reported to 

accurately represent maximum speed capabilities of athletes (Young et al., 2008; 

Young, Benton, & Pryor, 2001), with maximal linear sprints using fixed distance 

protocols being a reliable method of quantifying this physical trait (Hopker et al., 2009). 

The optimal method of recording sprint time is through the use of electronic timing 

gates that employ post-processing, which subsequently remove any ‘false’ signals 

(Earp & Newton, 2012). These false signals occur when the beam of the photocell is 

broken by an extended limb, instead of the torso, resulting in significant errors (Cronin 

& Templeton, 2008; Darrall-Jones, Jones, Roe, & Till, 2016). 

Research pertaining to the assessment of maximal speed and/or acceleration 

among boxers and other combat athletes is scarce. Previous papers have examined 

the sprint speed of taekwondo combatants utilising 20 m (3.53 ± 0.35 s - Cetin, Keçeci, 

Erdoğan, & Baydar, 2009; 3.7 ± 0.2 s - Markovic, Misigoj-Durakovic, & Trninic, 2005), 

30 m (5.07 ± 0.39 s among medal winners; 5.26 ± 0.48 s among non-medal winners - 

Sadowski, Gierczuk, Miller, & Cieśliński, 2012), and 6-s distance tests (40.18 ± 6.02 

m - Suzana & Pieter, 2009). Additionally, sprinting performance of karatekas over 10 

m (1.80 ± 0.05 s for kumite competitiors; 1.86 ± 0.07 s for kata competitors - 

Koropanovski et al., 2011) and 8-s (Baker & Davies, 2006) has also been documented.  

The results of taekwondo competitors over 20 m are lower than those observed across 

athletes in other sports such as rugby union (3.29 ± 0.2 s - Fletcher & Jones, 2004), 

rugby league (3.14 ± 0.12 s - Newman, Tarpenning, & Marino, 2004), soccer (3.11 ± 

0.13 s - Newman et al., 2004), and track and field athletes (3.28 ± 0.46 s - Winchester, 

Nelson, Landin, Young, & Schexnayder, 2008). Additionally, the performance of 

karatekas over a 10 m distance is inferior to those achieved by highly trained athletes 

(1.68 ± 0.05 s - Turki et al., 2012). Unfortunately, no previous studies have examined 
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the speed of boxers (via sprint assessments), meaning it is not currently known if this 

physical quality is associated with punching biomechanics and overall boxing 

performance. Though previous research has revealed the speed of the fist during a 

punch is influential to the force of the strike (Bolander et al., 2009; McGill et al., 2010), 

no research has evaluated the speed characteristics of boxers. Therefore, the 

influence of this physical quality on punching performance remains unknown, 

suggesting further research is required to determine whether speed assessments 

using sprint tests (10 and 20 m) correlate with specific biomechanical characteristics 

of punching, such as fist velocity and GRF. 

 

2.6. The scientific process in boxing performance: The influence of, and 

associations between, biomechanical and physical performance-related 

qualities. 

Given the complex and multifaceted nature of competitive boxing, success in the sport 

is clearly dependent upon numerous variables with many features studied previously 

(see Figure 2.8). Though access to such studies is clearly helpful in determining the 

characteristics of a successful boxer (and their performances), the descriptive, cross-

sectional nature of such research is unlikely to impact on applied practice (Bishop, 

2008). For example, that isometric muscular strength tends to be higher in elite rather 

than sub-elite standards (James et al., 2017), does not mean improving this variable 

enhances the ability of the boxer, nor does it reveal the most effective means by which 

a boxer might enhance this property. According to the ‘Applied Research Model for 

the Sport Sciences' (Bishop, 2008), the translation of research to practice is facilitated 

by a step-by-step approach to research problems whereby predictors of performance 
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and the efficacy of interventions should follow descriptive studies; to date, a clear 

majority of studies in boxing have only described the features of preparation (e.g. 

weight-making practices) and competition (e.g. punches thrown) in isolation.  

Though research has moved beyond mere description revealing some 

associations between muscular strength and power and impact biomechanics of 

maximal punches, including punch force (r = 0.67-0.85; Loturco et al., 2016), punch 

acceleration (r = 0.63-0.80; Loturco et al., 2014), and punch power (r = 0.58; Del 

Vecchio et al., 2017), the multifaceted nature of boxing means there is much still to 

discover. Nevertheless, these relationships highlight how biomechanical and physical 

qualities integrate to enhance punching performance alongside other boxer-specific 

and competition-based characteristics that amalgamate to optimise overall boxing 

performance (see Figure 2.8). Taken together, it appears augmenting the 

biomechanical and/or physical performance-related qualities of maximal punches via 

targeted interventions (e.g. RT) may enhance maximal punching, and potentially, 

overall boxing outcome. 
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 Figure 2.8. Overview of research themes associated with successful amateur boxing performance. Red ink denotes 
performance characteristics the current thesis will appraise in relation to maximal punching performance. 

BOXER 

BOXING PERFORMANCE 

PHYSICAL 
(Components of physical fitness) 

 

• Dynamic muscular strength (Lenetsky et al., 
2013; Turner et al., 2011). 

• Isometric muscular strength (Guidetti et al., 
2002; Khanna & Manna, 2006; Loturco et al., 
2016; Ramírez García et al., 2010). 

• Muscular power (Chaabene et al., 2015; 
Loturco et al., 2016; Obmiński et al., 2011). 

• Speed (Chang et al., 2011). 

• Acceleration (Adamczyk & Antoniak, 2010). 

 

PHYSIOLOGICAL & NUTRITIONAL 
(Health status and nutritional strategies) 

 

• Maximal oxygen uptake (Slimani et al., 2017; 
Smith, 2006). 

• Lactate threshold (Guidetti et al., 2002; Finlay 
et al., 2018; Hanon et al., 2015; Slimani et al., 
2017). 

• Body mass reduction (Franchini et al., 2012; 
Hall & Lane, 2001; Langan-Evans et al., 
2011; Morton et al., 2010). 

PSYCHOLOGICAL 
(Cognitive function and mental status) 

 

• Attentional focus (Halperin et al., 2017). 

• Perceived efficiency (Davids et al., 2006). 

• Between-round coach feedback (Halperin et 
al., 2016a). 

• Goal setting (O’Brien, Mellalieu, & Hanton, 
2009). 

• Reaction time (Loturco et al., 2015). 
BIOMECHANICAL 

(Movement traits) 
 

• Peak fist velocity (Cheraghi et al., 2014; 
Kimm & Thiel., 2015; Piorkowski et al., 2011; 
Viano et al., 2005; Walilko et al., 2005; 
Whiting et al., 1988). 

• Punch delivery time (Cheraghi et al., 2014; 
Piorkowski et al., 2011) 

• Angular joint velocities (Cabral et al., 2010; 
Cheraghi et al., 2014; Nakano et al., 2014) 

• GRF (Mack et al., 2010; Yan-ju et al., 2013). 

• Punch force (Loturco et al., 2016; Smith, 
2006; Viano et al., 2005; Walilko et al., 2005). 

• Movement variability (Lenetsky et al., in 
press; Orth et al., 2018). 

TECHNICAL & TACTICAL 
(Ability level) 

 

• Technical proficiency (e.g. punch accuracy) 
(Dunn et al., 2017; Slimani et al., 2017). 

• Overall punch volume (Davis et al., 2015 & 
2018; Święcicki et al., 2013). 

• Specific punch frequency (Davis et al., 2018; 
Slimani et al., 2017; Thomson & Lamb, 2016). 

• Punch selection (El Ashker, 2011; Hristovski 
et al., 2006). 

SITUATIONAL 

(Contextual factors) 
 

• Potential spectator influences (Carron et al., 
2005; Smit & Louw, 2011). 

• Contest location, ring dimensions, and 
opposition quality (Thomson & Lamb, 2016). 

INDIVIDUAL CHARACTERISTICS 

• Boxing experience (Smith, 2006).  

• Anthropometrical attributes (Davids et 
al., 2006). 



   

102 
 

2.7. Resistance training in boxing 

RT is a generic term that encompasses a wide array of different approaches that utilise 

a form of external load (e.g. free weights, resistance machines) to augment muscular 

and/or neuromuscular capabilities. RT often plays a central role in the physical 

preparation of athletes looking to enhance performance within their sport (Young, 

2006). When implemented appropriately into an athlete’s training regimen, RT can 

enhance a spectrum of physical and physiological traits responsible for successful 

sports performance, such as muscular strength, muscular power, muscular 

endurance, speed, agility and flexibility (Bompa & Haff, 2009; Verkhoshansky & 

Verkhoshansky, 2011). The most common method of introducing RT into a training 

programme is through the use of free weights. Free weights (comprising weighted 

barbells and dumbbells) allow athletes to train movement patterns similar to those 

experienced during competition and produce 43% greater muscle activity compared 

to the use of resistance machines (Schwanbeck, Chilibeck, & Binsted, 2009).  

To achieve optimal improvements in performance, it is suggested a 

combination of general and sport-specific RT methods be utilised to develop all the 

neuromuscular factors contributing to the skills required for the chosen sport (Cronin, 

McNair, & Marshall, 2001; DeRenne, Kwok, & Murphy, 2001; Young, 2006). The 

specific method(s) and objective(s) of RT will influence the neuromuscular, 

physiological and morphological adaptations experienced by an athlete, with sport-

specific movements (such as punching) being enhanced with the correct programme 

(McMaster et al., 2014). 

 

2.7.1. Prominent resistance training methods 
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2.7.1.1. Strength training 

Termed as the ability to produce maximal force against resistance (Kraemer & 

Ratamess, 2004), strength training (ST) is a highly effective method of stimulating 

increases in muscular strength (Cormie et al., 2011a; Folland & Williams, 2007), rate 

of force development (RFD) (Zatsiorsky & Kraemer, 2006) and mechanical power 

(Suchomel, Nimphius, & Stone, 2016). ST is augmented through the use of weighted 

equipment, such as free-weights, with optimal adaptations achieved when utilising 

loads >85% 1RM which have been shown to improve athletic ability through enhanced 

force-production resulting from both biochemical and morphological changes. These 

changes include elevated central nervous system (CNS) stimulation, enhanced motor 

unit recruitment and the inhibition of Golgi tendon organs (GTO) (Bompa, Di Pasquale 

& Cornacchia, 2003; Gabriel, Kamen, & Frost, 2006; Häkkinen, 1989). 

The use of ST has been shown to have a positive influence on the RFD 

characteristics of athletes across various sports with several studies (Aagaard et al., 

2002; Anderson et al., 2010; van Cutsem & Duchateau, 2005; van Cutsem, 

Duchateau, & Hainaut, 1998) highlighting these improvements, and further research 

demonstrating how maximal muscular strength may account for as much as 80% of 

the variance in voluntary RFD (150-250 ms) (Andersen & Aagaard, 2006). In support 

of these findings, a number of studies have examined the relationships between 

muscular strength and RFD (Haff et al., 2005; Kawamori et al., 2005; 2006; Kraska et 

al., 2009; Thomas, Jones, Rothwell, Chiang, & Comfort, 2015) with stronger 

individuals typically more able at generating greater RFD than weaker individuals. In 

addition to power characteristics, heavy-RT produces superior muscular strength 

adaptations compared to other RT methods (Stone, Stone, & Sands, 2007). As 

muscular strength is not developed through boxing skills training alone, boxers should 



   

104 
 

use very high loads (> 85% 1RM) and low repetitions (< 5) when performing ST to 

enhance neuromuscular qualities related to punching performance (maximal strength; 

RFD; peak power) without the acquisition of excessive muscular hypertrophy (Fleck & 

Kearney, 1993; Turner et al., 2011; Verkhoshansky & Siff, 2009; Young, 1993). 

Consequently, athletes should endeavour to enhance their maximal strength levels to 

their greatest capacity within the context of their sport, including body mass restrictions 

often observed within combat sports (Suchomel et al., 2016). 

As boxers commonly aim to compete at the lightest weight category possible, 

the strategies and techniques used to ‘make weight’ can play a critical role in the 

performance of a boxer during both training and competition, in addition to their 

general health (Franchini, Brito, & Artioli, 2012). It is not uncommon for boxers to lose 

body mass through methods such as acute energy restriction, severe dehydration and 

excessive exposure to heat (i.e. saunas and/or hot baths), which can have drastic 

effects on strength/power performance and overall health (Hall & Lane, 2001; Morton 

et al., 2010). The magnitude of body mass reductions observed has been highlighted 

in previous research, with boxers commonly losing around 3-4 kg the week prior to a 

contest (Hall & Lane, 2001). Such acute weight loss and dehydration can significantly 

impair various physical traits essential to combat sport performance, including punch 

force (Smith et al., 2001) and muscular strength and power (Roemmich & Sinning, 

1996). Indeed, previous studies have reported muscular strength (13.6% - Gulati, 

Wasuja, & Kumari, 2006) and peak power (elbow flexion; 125.8 ± 0.3 W; elbow 

extension - 132.7 ± 8.4 W; Roemmich & Sinning, 1996) decreases among combat 

sport athletes after acute weight loss, highlighting the negative impact of this practice 

on important physical qualities associated with maximal punching performance. 

However, Morton et al. (2010) demonstrated that with the correct strategy, boxers can 
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reduce body mass considerably (9.4 kg) and maintain muscular strength without acute 

losses in lean body mass. Consequently, boxers need to ensure that their weight-

making strategies are not too radical so that physical performance remains unaffected. 

 

2.7.1.2. Olympic weightlifting 

Consisting of two exercises known as the ‘snatch’ and the ‘clean and jerk’, 

Olympic weightlifting (OL) movements are popular within the RT programmes of 

athletes due to their effectiveness at enhancing triple extension, a movement pattern 

observed across a plethora of sporting movements (Hori, Newton, Nosaka, & Stone, 

2005). The two exercises that comprise OL involve raising a loaded barbell above the 

head in either one stage (snatch) or two stages (clean and jerk). As a result, Olympic 

lifts facilitate the development of whole-body muscular power (Cormie et al., 2011b; 

Schilling et al., 2002). 

OL and its derivatives (e.g. hang clean, hang snatch, high pull) could be useful 

within a boxing-specific RT programme as a successful ‘lift’ requires the boxer to 

demonstrate considerable force and power characteristics (Fleck & Kearney, 1993; 

Ruddock et al., 2016; Turner et al., 2011). The ability to lift high loads at speed, such 

as with OL movements, augments an athlete’s explosive power and RFD that transfers 

to various sporting actions, particularly striking within combat sports (Souza-Junior et 

al., 2015; Turner et al., 2009a). Consequently, the nature of OL in addition to their 

movement similarities across numerous athletic endeavours highlights their 

effectiveness as a method of power training (Cormie et al., 2011b). 
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2.7.1.3. Ballistic training 

Ballistic training (BT) is defined as performing movements requiring rapid 

acceleration against resistance whereby the body or object achieves full acceleration 

(Turner, 2009a). The effectiveness of BT at enhancing RFD lies in the nature of the 

exercises that comprise this method of RT (e.g. bench throw; jump squat) which permit 

maximal acceleration throughout the entire movement to the point of projection (Turner 

et al., 2011). As a result of the ability to continue accelerating throughout the range of 

motion, concentric velocity, force, power and muscle activation are higher during a 

ballistic movement in comparison to a traditional RT exercise comprising a similar 

movement pattern (Cormie et al., 2007b; Newton et al., 1996). Training with ballistic 

exercises can enhance power production, enhance RFD, elevate neural activation and 

increase inter-muscular coordination that is specific to movements typically 

encountered in sports (Cormie et al., 2007a; Kyröläinen et al., 2005; McBride et al., 

2002). 

As BT is effective at enhancing the first 200-300 ms of the force-time curve 

(Häkkinen, Komi, & Alen, 1985; Newton & Kraemer, 1994), the use of this RT method, 

which increases RFD, is essential to optimising performance in boxing (Del Vecchio, 

2011) whereby forceful punches occur between 50-300 ms from the initiation of motion 

to contact with the intended target (Aagaard et al., 2002; Whiting et al., 1988). The 

performance enhancements of BT in relation to boxing can be observed within the 

research of Obmiński and Wiesław (2012) which discovered how performing daily shot 

putt exercises across a 2-week period produced significant improvements in explosive 

strength in a movement pattern similar to that of a rear-hand cross punch in female 

boxers. 
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2.7.1.4. Plyometric training 

Plyometric training (PT) is a popular method of dynamic RT among athletes 

striving to enhance muscular power and explosiveness (Chu, 1998). PT takes 

advantage of the stretch-shortening cycle (SSC) through the use of a quick eccentric 

contraction that is immediately followed by a rapid concentric contraction with a 

minimal amortisation phase (Davies, Riemann, & Manske, 2015). Plyometric 

exercises that encompass various medicine ball throws and jumping movements, are 

a highly effective RT method for augmenting muscular power and velocity, increasing 

peak force, RFD, elevating muscle activation and increasing an athlete’s ability to 

utilise stretch reflexes (de Villarreal, Requena, & Newton, 2010; Hill & Leiszler, 2011; 

Jarvis, Graham-Smith, & Comfort, 2016; Vissing et al., 2008; Wilson & Flanagan, 

2008). A further aspect of PT particularly useful to boxers who compete in weight-

governed bouts is that increases in muscular power, explosiveness and RFD often 

occur without significant morphological increases of the trained muscle (i.e. no 

significant increases in muscle hypertrophy) (Ellenbecker, Davies, & Bleacher, 2012; 

Loturco et al., 2016). 

Surprisingly, Bružas et al. (2016) documented a 4-week RT programme 

consisting of plyometric exercises with added external loads did not improve punching 

power or speed. It is likely that the research of Bružas et al. (2016) failed to observe 

improvements in punching performance due to the upper-body plyometric exercises 

being performed with added external loads. Previous research has highlighted how 

the addition of external load during plyometric exercises reduces movement speed 

and RFD in the upper-body (Hinshaw, Stephenson, Sha, & Dai, 2018), but enhances 
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vertical and horizontal-jump performances significantly in the lower-body (Kange, 

2018; Khlifa et al., 2010). Consequently, upper-body plyometric exercises 

implemented within a training programme designed to enhance movement velocity 

should do so with a load similar to that of the sporting action itself to replicate the 

actual speed of athletic performance (Brewer, 2017; McBride et al., 1999). Meanwhile, 

lower-body plyometrics may be performed with external loads equating to ~10% of 

body mass to increase the ability of lower-limb musculature to store and utilise elastic 

energy (Kang, 2018; Khlifa et al., 2010). Cheraghi et al. (2014) suggests plyometrics 

(non-weighted) should play a central role within a boxing-specific RT programme to 

augment SSC muscle functions and contractile RFD after observing the application of 

the SSC during rear-hand cross punches. Loturco et al. (2016) substantiates this 

suggestion by stating how PT should strive to augment ‘fighting-specific neuro-

mechanical capacities’ (p.114) in boxers due to the ability of this training method to 

stimulate positive adaptations relating to the SSC and muscular recruitment. Additional 

authors also propose that PT provides an effective stimulus for enhancing punching 

power among combat athletes (Komi, 2003; Turner et al., 2011; Verkhoshansky et al., 

1991; Wilson et al., 1993).  

 

 

 

2.7.1.5. Contrast training 

Within the current body of literature, it has been suggested utilising maximal 

strength and ballistic/plyometric exercises in the same training session can optimise 
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strength and power performance greater than performing either training method alone 

(de Villarreal, Requena, Izquierdo, & Gonzalez-Badillo, 2013; Mangine et al., 2008; 

Rippetoe & Kilgore, 2009). This method of RT is commonly referred to as either 

‘contrast’ or ‘complex’ training, although these terms are wrongly used interchangeably 

as distinct differences exist between the two methods. Contrast training (CT) involves 

alternating heavy and light RT loads on a set-for-set basis, whilst complex training 

involves performing all heavy load exercise sets first before completing the lighter load 

exercises after (Duthie, Young & Aitken, 2002; Jones, Bampouras, & Comfort, 2013). 

An example of CT would involve alternated maximal strength (e.g. bench press) and 

ballistic (e.g. bench throw) or plyometric (e.g. countermovement medicine ball chest 

throw) exercises for a specific number of sets (i.e. bench press; bench throw; bench 

press; bench throw). Meanwhile, an example of complex training would comprise a 

maximal strength exercise completed prior to a ballistic or plyometric exercise (e.g. 

bench press; bench press; bench throw; bench throw). CT protocols have been shown 

to augment muscular strength and muscular power greater than strength or power 

exercises performed in isolation (de Villarreal et al., 2013; Esformes, Cameron, & 

Bampouras, 2010; Rahmi & Behpur, 2005). Hammami, Negra, Shephard, and Chelly 

(2017) observed greater improvements across acceleration (5 m sprint), speed (40 m 

sprint), power (CMJ; squat jump) and agility (repeated change of direction ability) 

assessments among soccer players following a CT intervention compared to standard 

ST. de Villarreal et al. (2013) also documented greater increases in strength and 

power performance variables (back squat 1RM; 30-metre sprint; concentric squat-

velocity) following CT compared to other RT methods (ST, OL, BT, and PT 

respectively). 
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The enhancement of muscular strength, muscular power and performance 

variables associated with these physical traits are suggested to occur as a result of 

CT taking advantage of a physiological event known as post-activation potentiation 

(PAP) (Jones et al., 2013). PAP is classified as a ‘phenomenon’ whereby a strong 

muscular contraction (usually resulting from ST using loads >87% 1RM) augments 

subsequent force-generation capabilities via elevated neural stimulation, enhanced 

motor-unit recruitment and myosin light-chain phosphorylation (Chiu & Barnes, 2003; 

Farup & Sørensen, 2010; Gilbert & Lees, 2005; Hrysomallis & Kidgell, 2001). As a 

result, CT can enhance force potential due to superior motor-unit availability in 

subsequent muscular contractions (Crewther et al., 2011), making this method of RT 

potentially useful to boxing where RFD is critical to success (Aagaard et al., 2002; 

Olsen & Hopkins, 2003; Loturco et al., 2016). This is reinforced within the paper of 

Cheraghi et al. (2014) whereby the authors recommend the use of CT to enhance 

punching velocity in elite amateur boxers. Thus, investigating the influence of CT on 

biomechanical and physical performance-related characteristics associated with 

maximal punching performance is warranted. 

 

2.7.2. The influence of resistance training on punching performance 

2.7.2.1. Common resistance training misconceptions and myths 

 Until recently, boxing at both amateur and professional levels was a sport 

reluctant to implement RT methods (Del Vecchio, 2011). Despite advancements in 

sports science, boxers and their coaches would often (and arguably still do) dismiss 

the established performance benefits observed in other sports associated with RT in 

favour of time-honoured methods (Price, 2006). Bourne et al., (2002) state how 
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traditionally, boxers would prepare for a contest by completing various 

bodyweight/callisthenic exercises and long distance running alongside skill training 

encompassing pad work, sparring and punch bag intervals (Turner, 2009a). The 

hesitancy of boxing coaches and combatants to introduce RT into training 

programmes appears to lie in fears concerning increased body mass, decreased 

flexibility and aerobic capacity, reduced punching speed/velocity and excessive 

muscle mass (Del Vecchio, 2011; Ebben & Blackhard, 1997). Furthermore, the 

omission of RT in favour of excessive aerobic-based training was deemed the superior 

strategy for not only preventing diminished competitive performance, but also for 

‘making weight’ as boxers and other combat sport athletes will often attempt to 

compete at their lowest possible weight to box against opponents of a lower body 

mass (Turner, 2009a). 

However, RT can have a negative influence on boxing performance by 

impairing speed-strength, technical intricacies of punching and increasing muscle bulk 

if performed excessively with incorrect loading parameters (Verkhoshansky, 1986). 

Still, if implemented correctly within a boxer’s training programme, resistance 

exercises can enhance the impact force (Loturco et al., 2016), power (Čepulėnas et 

al., 2011; Del Vecchio et al., 2019; Hlavačka, 2014), acceleration (Loturco et al., 2014), 

and velocity (Markovic et al., 2016) of punches without significantly increasing body 

mass. Implementing a RT programme correctly within an amateur boxer’s training 

regimen can enhance performance and decrease injury potential through 

strengthening the muscular system, strengthening tendons and ligaments, 

augmenting the structural integrity of all involved joints and improving a boxer’s ability 

to produce explosive strength (Cordes, 1991; Turner et al., 2011). Indeed, much 

research has established the important role of RT in injury prevention across a range 
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of sports, including those involving combat (James, 2014; Turner, 2009b; Wallace & 

Flanagan, 1999) Furthermore, a RT programme emphasising enhancements in 

maximal strength and power is unlikely to cause considerable increases in muscle bulk 

that have a detrimental effect on performance as force production is not principally a 

function of muscle size, but rather efficient neuromuscular stimulation (Verkhoshansky 

& Siff, 2009). Although progress has been made within the sport over recent years, it 

is evident knowledge of how to optimally increase punching performance through RT 

is still in its infancy (Turner et al., 2011). 

 

2.7.2.2. How can resistance training enhance punch performance? 

 It has been noted that maximal strength and power often distinguish superior 

competitors within combat sports (James et al., 2017). Past research has also 

discovered the existence of a relationship between force and power production that 

highlights how an athlete will be unable to obtain considerable levels of power without 

first demonstrating a certain level of muscular strength (Cormie et al., 2011b). 

Therefore, the introduction of boxing- and/or boxer-specific RT programmes appear 

worthwhile considering RT is a highly effective method of enhancing maximal 

muscular strength and maximal neuromuscular power (Cormie et al., 2011b; Kraemer 

& Mazzetti, 2003; Suchomel et al., 2016). 

Within the present body of literature, there is strong evidence to suggest that 

RT programmes and protocols can enhance characteristics of punching performance 

(Čepulėnas et al., 2011; Del Vecchio et al., 2019; Hlavačka, 2014; Kim et al., 2018). 

Early research in the area utilised varying methods to determine if physical and 

punching performance among boxers could be improved via specific RT programmes. 
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Getke and Digtyarev (1989) documented how a ST programme increased explosive 

strength, force output and maximal strength, which was suggested to enhance 

punching power and speed (although these variables were not assessed pre- or post-

intervention). Solovey (1983) examined the effects of various weighted exercises 

(medicine balls and dumbbells) on punching velocity in young Soviet boxers, 

concluding that the use of RT enhanced the ‘speed’ (total time, time of the latent period 

and fist movement time) of single maximal punches significantly. Similar findings were 

also reported by Dengel et al. (1987) who found punch velocity improvements of 26% 

and 32% for the left and right hands, respectively, across the U.S. Olympic boxing 

team following a 2-week RT programme.  

More contemporary research has reported the positive influence RT can have 

on punching performance. Markovic et al. (2016) documented 6-11% fist velocity 

improvements after 6-weeks of resistance band training. Meanwhile, Čepulėnas et al. 

(2011) documented impact force improvements of up to 44% (lead hand) and 17% 

(rear hand) among elite Lithuanian boxers following a 4-week intervention comprising 

40% boxing training and 60% boxing-specific RT. For impact power, increases of 25-

51% (Del Vecchio et al., 2017), 21.4% (Del Vecchio et al., 2019), ~6% (Hlavačka, 

2014), and ~27% (Kim et al., 2018) in straight and hook punches have been reported 

at the conclusion of six-week, nine-week, and sixteen-week programmes, 

respectively. It is suggested these punch performance increases relate to the 

relationships between punch impact kinetics and muscular strength and power (r = 

0.67-0.85) Loturco et al., 2016)), though further research is required to substantiate 

this claim. 

Furthermore, Loturco et al. (2018) found mean and peak muscular power 

improvements in bench throw (+8%) and jump squat (+7%) performance among 
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boxers following a 7-week intervention, concluding that characteristics of punching 

performance were also augmented based upon the relationship between punch impact 

forces and muscular power variables observed previously (Loturco et al., 2016). These 

results highlight the positive effects of a correctly implemented RT programme on 

punching performance.  

More specifically, CT has been suggested to be highly beneficial to boxers 

striving to enhance punching performance. Matthews and Comfort (2008) posited that 

performing loaded movements that are biomechanically similar to punching (such as 

straight, hook, and uppercut punches on a cable-pulley machine) can have a 

potentiation effect on subsequent unloaded punches, augmenting the speed and 

power of the strike. Despite this suggestion appearing sound in theory, RT should 

replicate movements similar to those observed within the athlete’s sport (Cormie et 

al., 2011), but not be identical as performing complex sporting movements with 

external loads (such as punching with dumbbells and/or a cable-pulley machine) can 

have a negative influence on the technical intricacies, fine movement patterns and 

timing of punching, in addition to creating excessive load on the deltoid musculature 

and lumbar spine (Klatten, 2016). Strength and power performance increases are 

likely enhanced optimally through the use of traditional strength exercises as opposed 

to high-load sport-specific movements given the recommendations of Turner et al. 

(2011), Lenetsky et al. (2013), and Loturco et al. (2016). Consequently, coaches and 

boxers should look to implement resistance exercises that train specific movement 

patterns observed within boxing (i.e. shoulder protraction; elbow extension; trunk 

rotation; triple extension of the hip, knee and ankle), as opposed to adding external 

load to actual sport-specific techniques. 
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With the effects of RT on boxing performance acknowledged within certain 

studies, some authors have suggested performance can be augmented through the 

use of particular exercises that replicate specific movement patterns observed within 

boxing. Fitzmaurice (1982) and Estwanik (1991) suggested the inclusion of tricep dip 

and bench press exercises would improve the force and power of a boxer’s punch via 

strengthening elbow extension. Lockwood and Tant (1997) meanwhile recommended 

the inclusion of weighted ‘heel training’ (plantar flexion) following EMG assessments 

of boxers. Furthermore, Spaniol (2012) and Turner et al. (2011) recommended the use 

of rotational medicine ball throws and triple extension exercises (e.g. squats, jump 

variations, Olympic lifts) to improve a boxer’s ability to generate force throughout the 

kinetic chain. Such resistance exercises are supported by Filimonov et al. (1985) who 

observed how rear leg drive (38.46%), trunk rotation (37.42%) and elbow extension 

(24.12%) accounted for the total amount of force generated during straight punches 

among experienced Soviet boxers, each of which can be augmented through RT 

exercises (Fitzmaurice, 1982; Lockwood & Tant; 1997; Spaniol, 2012; Turner et al., 

2011). Although an optimal RT programme would aim to include a specific exercise to 

enhance each movement pattern determined to be crucial to punching force, 

enhancing lower-body strength and power is essential. Punching force is paramount 

to successful boxing performance and cannot be optimised without taking advantage 

of the force potential of the lower-body (Smith & Draper, 2006), therefore, specificity 

of ST for boxers looking to enhance punching performance should focus on the lower 

body (Cheraghi et al., 2014). 

Previous research (McGill et al., 2010) has highlighted how elite striking 

performance involves a contraction-relaxation-contraction cycle of the trunk 

musculature. This suggests it may be beneficial to perform RT exercises that 
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emphasise a rapid rate of relaxation coupled with a rapid rate of contraction to enhance 

the trunk’s ability to transfer force. This can be achieved through the inclusion of 

ballistic rotational throwing exercises that generates considerable force at the trunk 

following a brief period of relaxation which is subsequently transferred distally to the 

upper extremities via sequential kinetic linking (Spaniol, 2012). It may also be useful 

for boxers to include RT exercises that increase the speed/velocity of the upper 

extremities as this has been suggested to be a key determinant of punching impulse 

and impact-force (Mack et al., 2010; Nakano et al., 2014). Whilst this suggests the 

inclusion of primarily upper-body exercises to achieve improvements in punching 

performance are necessary, Lenetsky et al. (2013) convey how hand velocity is 

predominantly influenced by leg drive through the transmission of forces along the 

kinetic chain. Therefore, whilst upper-body exercises are advantageous to boxers, 

lower-body exercises involving triple extension appear superior for optimising 

punching performance. 

Additional findings of interest can be extrapolated from research into baseball 

pitching which discovered how weakness in knee and hip joints can negatively affect 

the transfer of force within the kinetic chain (Burkhart, Morgan, & Kibler, 2003; 

Kageyama et al., 2014). Due to the kinetic and kinematic similarities between the 

techniques of punching and pitching, strengthening the knee and hip joints via RT 

would appear to improve a boxer’s ability to transfer force across the kinetic chain 

whilst also minimising injury risk. This has also been noted among elite shot putters 

whereby virtually half of their throwing/putting performance is derived from the triple 

extension of the lower body (ankle, knee and hip joints) (Terzis et al., 2003). Whilst 

leg drive is arguably the principal component relating to optimal punching performance 

(Cheraghi et al., 2014; Lenetsky et al., 2013; Turner et al., 2011), the hip and pelvis 



   

117 
 

also contribute significantly to the impact force of a punch by permitting the lower-body 

to put a considerable quantity of force through the ground, which in turn, promotes 

substantial internal rotation and triple extension of the hip joint (Arus, 2013; Ralston, 

1999). These statements further support the inclusion of RT exercises that emphasise 

extension of the ankle, knee and hip joints (triple extension) to enhance punching 

performance among amateur boxers. 

Despite previous research highlighting the positive influence RT can have upon 

boxing, it is still unclear as to which RT method is optimal at enhancing punching 

performance. Whilst some research has shown how CT enhanced various strength 

and power performance variables more than ST, OL, BT, and PT (de Villarreal et al., 

2013), it is still unknown if CT is superior to other RT methods for improving punching 

performance alongside physical and physiological characteristics. 

 

2.8. Conclusion 

 This review has highlighted the limited body of knowledge relating to the 

biomechanics and physiology of punches and the influence of RT on punching 

performance. It is clear maximal punching has not been investigated comprehensively, 

with researchers often focussing on a single punch technique (usually the rear-hand 

cross). Certain punch types, such as the lead and rear uppercuts, have been virtually 

ignored despite their important potential during a contest. In terms of training, it is 

apparent there is a need for the creation of a detailed resistance exercise programme 

catered towards optimising maximal punching performance. The relative lack of 

research in general reflects the long-standing reluctance of boxing as a sport to adopt 

the practices observed within contemporary sports science. It would be beneficial for 
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boxers and coaches to be made aware of the factors influencing punching in order 

that they might adopt training practices more suited to enhancing punching 

performance, and overall competition outcomes. 

While some researchers have determined muscular strength and power 

developed along the sagittal plane (i.e. via back squat, bench press) are associated 

with punching impact forces (Loturco et al., 2016), other physical performance-related 

attributes such as speed and muscular power along the frontal and transverse planes 

have not been examined. Additionally, the need for acquiring both kinetic and 

kinematic data during different punching techniques is essential in order to establish 

the biomechanical characteristics of each punch type and how these characteristics 

can be developed within training. The kinematic differences between punch types (i.e. 

straights, hooks and uppercuts) remain uncertain, as are the kinetics of each punch 

technique, particularly GRF. 

It has been established that a powerful punch is initiated via the recruitment of 

lower-body musculature which acts as a conduit for force to travel distally through the 

body to the point of impact made by the fist (Cheraghi et al., 2014; Dyson et al., 2007; 

Filimonov et al., 1985; Lenetsky et al., 2013; Turner et al., 2011). Previous research 

has established a strong association between strength and power qualities and 

punching ability among amateur boxers (Chaabene et al., 2015; Loturco et al., 2016; 

Obmiński et al., 2011), although the interaction between punching performance and 

physical attributes such as speed, acceleration and rotational power have not been 

reported. This is surprising considering the importance of these attributes to boxing 

performance (Chang et al., 2011; Loturco et al., 2014; Spaniol, 2012). Moreover, given 

the certain impact on such qualities afforded by specific RT, it would seem worthwhile 
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that the effectiveness of different contemporary RT interventions (such as BT, PT, ST, 

and CT) on punching performance is examined. 
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Chapter 3 

An analysis of the three-dimensional kinetics and kinematics of 

maximal effort punches among amateur boxers 
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The contents of this chapter form the basis of the following publication: 

Stanley, E., Thomson, E., Smith, G., & Lamb, K.L. (2018). An analysis of the three-

dimensional kinetics and kinematics of maximal effort punches among amateur 

boxers. International Journal of Performance Analysis in Sport, 18(5), 835-854. 

 

Abstract 

The purpose of this study was to quantify the three-dimensional kinetics and 

kinematics of different punch types (jab, rear-hand cross, lead and rear hook, lead and 

rear uppercut) among amateur boxers. Fifteen male boxers (age: 24.9 ± 4.2 years, 

stature: 178 ± 8.0 cm; body mass: 75.3 ± 13.4 kg; years of experience: 6.3 ± 2.8 years) 

performed maximal effort punches against a suspended punch bag during which 

upper-body kinematics were assessed using a 3D motion capture system and ground 
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reaction force (GRF) of the lead and rear legs were recorded via two force plates. 

Peak fist velocity, punch delivery time, peak shoulder and elbow joint angular velocities 

were quantified for each punch type. For all variables except elbow joint angular 

velocity, analysis revealed significant (P < 0.05) differences between straight, hook 

and uppercut punches. The lead hook exhibited the greatest peak fist velocity (11.95 

± 1.84 m/s), the jab the shortest delivery time (405 ± 0.15 ms), the rear uppercut the 

greatest shoulder joint angular velocity (1069.81 ± 104.5 deg/s), and the lead uppercut 

the greatest elbow angular velocity (650.96 ± 357.5 deg/s). Proximal to distal 

sequencing of the timings of peak angular velocities was only apparent in jab and rear-

hand cross punches. Lead leg net braking and rear leg net propulsive impulses were 

greatest for the rear hook, while lead and rear leg vertical impulses were highest for 

the lead hook, respectively. Peak resultant GRF different significantly (P < 0.001) 

between rear and lead legs for the jab punch only. Vertical GRF accounted for a larger 

degree of total GRF than anteroposterior or mediolateral GRF for both lead and rear 

legs across all punch types. Peak lead hook fist velocity was moderately correlated 

with peak lead leg GRF, and peak shoulder and elbow joint angular velocities, 

respectively. Hooks and uppercuts had longer delivery times than straight punches, 

yet reached higher end-point fist velocities. Whilst these findings provide novel 

descriptive data for coaches and boxers, future research should examine if physical 

and physiological capabilities relate to the key biomechanical qualities associated with 

maximal punching performance. 

 

Key words: combat sports, boxing, punching, technique analysis. 

 

 

3.1. Introduction 

Boxing punches are intricate actions requiring the recruitment of leg, trunk and arm 

musculature to function synergistically in a coordinated manner (Turner et al., 2011). 

Despite the importance of punching to successful performance, there is only a limited 
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amount of biomechanical knowledge for most of its techniques. Some kinematic 

characteristics (such as joint angles and velocities and punch velocity) have been 

investigated for certain punches (jabs, rear-hand crosses, lead hooks, rear hooks and 

rear uppercuts: Cabral et al., 2010; Cheraghi et al., 2014; Kimm & Thiel, 2015; 

Piorkowski et al., 2011) among competitive boxers. For example, research has 

reported the delivery times and fist velocities of straight (357 ± 178 ms and 5.9 m/s - 

8.22 m/s) and hook (477 ± 203 ms and 8 m/s - 11 m/s) punches, respectively (Cheraghi 

et al., 2014; Piorkowski et al., 2011), though from a biomechanical perspective, further 

analysis remains warranted. 

Joint and punch velocities are dependent upon a proximal-to-distal sequencing 

pattern initiated by the lower limbs that travels distally through the pelvis, trunk and 

arm before peaking at the fist, causing the acceleration of the fist towards the target 

(Cheraghi et al., 2014). Proximal-to-distal sequencing and the subsequent velocities 

generated via rapid joint rotations have been observed in various punching and kicking 

techniques across combat sports (Estevan et al., 2015; Sorensen et al., 1996; 

VencesBrito et al., 2011). Fist velocity has also been suggested to be dependent upon 

the distance of the acceleration path to the target, with hook punches exhibiting greater 

values than straight punches due to a longer acceleration pathway that facilitates the 

generation of greater pre-impact fist velocities (Piorkowski et al., 2011; Viano et al., 

2005; Whiting et al., 1988). However, how joint and fist velocity differ between straight, 

hooks, and uppercuts has not been reported within the scientific literature.  

Kinetic characteristics have also been shown to influence properties of 

punching, particularly ground reaction forces (GRF) (Mack et al., 2010; Yan-ju et al., 

2013). For example, the force generated by the rear leg has been suggested to 

contribute considerably to the performance of rear hand punches (Cheraghi et al., 
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2014; Filimonov et al., 1985; Turner et al., 2011), whilst Yan-ju et al. (2013) noted lead 

leg force was a significant contributor to jab fist velocity. However, Mack et al. (2010) 

reported only small, albeit significant, relationships between lower body forces and 

peak hand velocity for rear hook (R2 = 0.103) and rear-hand cross (R2 = 0.099) 

punches, respectively, suggesting further research is warranted here. Moreover, whilst 

their relevance has been alluded to (Lenetsky et al, 2013), no scientific studies have 

examined the direction (anteroposterior, mediolateral, vertical) of GRF during specific 

punch types. 

With the general lack of empirical evidence, coaches and boxers are unlikely to 

have the means to form an understanding of how punches can be enhanced through 

kinetic and kinematic assessments and how knowledge and information quantified via 

such assessments can influence performance. In the manner of previous appraisals 

of sports techniques (Kageyama, Sugiyama, Takai, Kanehisa, & Maeda, 2014; Torres, 

2013; Wagner et al., 2014), gathering information relating to fist velocity, GRF 

production and their relationship across different punch techniques could facilitate a 

grasp of the technical characteristics of different punch techniques and lead to the 

development of punch-specific training interventions. 

The overall aim of this study therefore was to quantify the GRF and kinematic 

characteristics of a variety of maximal punches among amateur boxers. The main 

objectives were to: (i) assess peak fist velocities and delivery times across punch 

types; (ii) examine the differences in lead and rear leg resultant GRF and its directional 

application across punch types; (iii) quantify lead leg net braking, rear leg net 

propulsive and lead and rear leg vertical impulse across punch types, and (iv) quantify 

the relationships between kinematic (punch delivery time, peak shoulder joint resultant 

angular velocity, peak elbow joint resultant angular velocity) and kinetic (peak lead 



   

125 
 

and rear leg resultant GRF, lead leg net braking and vertical impulse, rear leg net 

propulsive and vertical impulse) variables and peak resultant fist velocity. 

 

3.2. Methods 

3.2.1. Participants 

Fifteen males (age: 24.9 ± 4.2 years; stature: 177.9 ± 8.0 cm; body mass: 75.3 ± 13.4 

kg; years of experience: 6.3 ± 2.8 years) across seven weight categories (flyweight 

(49-52 kg) to super-heavyweight (91+ kg)) were recruited from six amateur boxing 

clubs located across the North West of England, based upon current boxing 

experience (≥ 2 years) and official bout history (≥ 2 bouts). A sample size calculation 

(G*Power version 3.1.9.4, Universität Düsseldorf, Dusseldorf, Germany - Faul et al., 

2009) based on standard input parameters (α level = 0.05, power = 0.8) and effect 

sizes (0.68 for punch delivery time and 0.99 for contact speed) gleaned from 

Piorkowski et al. (2011), yielded a sample of 12 (see Appendix 1). All participants 

provided written informed consent prior to the study and institutional ethical approval 

was granted by the Faculty of Medicine, Dentistry and Life Sciences Research Ethics 

Committee (see Appendix 12). 

 

3.2.2. Design 

The study adopted a within-subjects design to assess kinetic and kinematic aspects 

of six maximal punches (jab, rear-hand cross, lead and rear hook, lead and rear 

uppercut) considered to represent the principal techniques observed in boxing 

competition (El Ashker, 2011; Kapo et al., 2008; Thomson & Lamb, 2016). All data 
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were collected in one session and participants did not require a separate 

familiarisation trial as all had experience (≥ 2 years) performing the punch techniques 

and were familiar with punching a target similar to that used in the present study. 

Twelve kinematic and fourteen kinetic variables were measured with respect to the six 

punch types via a 3D motion capture system and two embedded force platforms, 

respectively. 

 

3.2.3. Procedures 

For all punch trials, a water-filled punch bag that resembled the average height of a 

human head (9 in) (Aqua Bag ‘Headhunter’ model, Aqua Training Bag, New York, 

United States) was used to provide a striking target (Figure 3.1). Utilising a punch 

target that moves upon impact has been advocated (Atha et al., 1985; Nakano, Lino, 

Imura, & Kojima, 2014; Tong-Iam et al., 2017) as an effective way of ensuring maximal 

effort punches. The punch bag was suspended at the shoulder level of each participant 

by a heavy-duty steel chain secured by a punch bag hook located above the 

designated testing area. Three reflective markers were placed on the top of the punch 

bag in order to permit the 3D cameras to detect its movement upon impact. This 

movement acted to verify the instance of punch contact (Figure 3.2). 
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Seventy six reflective markers were placed on specific anatomical landmarks 

of each participant to facilitate a comprehensive assessment of full-body kinematics in 

3D spaces across six degrees of freedom (Figure 3.3) (body segments defined by 

Vanrenterghem, Gormley, Robinson, & Lees, 2010). Of the 76 markers, 16 were 

utilised for calibration purposes only and were removed during the dynamic trials. The 

head was not required for analysis, while the hand segments (Figure 3.4) were defined 

as per Piorkowski et al. (2011) (to obtain detailed fist velocity data). These segments 

included the upper arm (left and right), lower arm (left and right), thorax, pelvis, upper 

leg (left and right), lower leg (left and right), and foot (left and right). Markers allocated 

to the ‘radial wrist’, ‘ulnar wrist’ and ‘glove centre’ defined the hand segment (Figure 

3.4). 

Figure 3.1. Aqua Bag ‘Headhunter’ punch target. 
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Following calibration, the 3D positions of all reflective markers were obtained 

from eight opto-electronic ceiling mounted cameras (Oqus 7+ system, Qualisys Inc., 

Gothenburg, Sweden). Kinematic data was obtained via Qualisys Track Manager 

(QTM) (Version 2.14, Qualisys Inc., Gothenburg, Sweden), sampled at 300 Hz, and 

analysed using Visual 3D (Version 6, C-Motion Inc., Rockville, United States). GRF 

data were collected from both the lead and rear legs of each participant for all punch 

trials by two embedded force platforms (model 9281CA with 600 x 400 mm internal 

amplifiers, Kistler Instruments, Hampshire, UK), and sampled at a rate of 900 Hz. 

Prior to testing, participants completed a 10-min self-selected warm-up 

comprising generic and boxing-specific activities such as jogging, dynamic stretches 

and shadow-boxing (Smith et al., 2000). The boxers were permitted to strike the punch 

Figure 3.2. Laboratory coordinate system and punch target. 
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bag whilst wearing the reflective markers until they became familiarised with the set 

up and positioning of the target (~5 min). 

All were instructed to strike the punch bag using a single, maximum effort punch 

(termed as a knock-out punch) whilst maintaining the correct technique for the specific 

punch type performed. Boxers wore fabric hand-wraps (450 cm length, 5 cm width; 

Adidas, Germany) and boxing gloves (284 g; Adidas, Germany) as required during 

competition.  

Six punch types (jab, rear-hand cross, lead hook, rear hook, lead uppercut, rear 

uppercut) were performed from either an orthodox (left foot leading) or southpaw (right 

foot leading) stance (Hickey, 2006), depending on the preference of each participant 

(orthodox n = 11; southpaw n = 4). Previous research (Bingul, Bulgan, Tore, Bal, & 

Aydin, 2018) has reported comparable punch impact forces between orthodox (1501 

± 316 N) and southpaw (1462 ± 371 N) boxers, in addition to impact accelerations 

(orthodox - 30.76 ± 6.5 m/s2, southpaw – 29.96 ± 7.6 m/s2) and fist velocities (orthodox 

- 10.58 ± 1.3 m/s, southpaw – 10.61 ± 1.4 m/s), respectively, for hook punches. 

Therefore, it is deemed that boxing stance will not have a significant influence on 

maximal punch kinetic and kinematic data. 

Each punch was performed five times in succession with 60 s recovery period 

between trials. In the manner of previous related research, all punches were 

performed in the order of (1) jab; (2) rear-hand cross; (3) lead hook; (4) rear hook; (5) 

lead uppercut and; (6) rear uppercut. This was to standardise the testing procedure 

across all participants and promote the precision/accuracy of each trial (i.e. boxers 

strike the same area of the target) (Lenetsky et al., 2017; Piorkowski, 2009). 

Furthermore, with 30 punches to complete, it was important to reduce the effects of 
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fatigue upon data collection. Though ample rest was provided between efforts, it was 

also felt the execution of the most efficient (Hickey, 2006) and least energetically 

demanding punches (i.e. straight punches) (El Ashker, 2011) before progressing to 

the more demanding hook and uppercut punches (Kapo et al., 2008) was an effective 

strategy to manage fatigue and ensure technique was not hampered at any point 

during testing. Moreover, the order of punches followed the percentage of specific 

punches executed in competition, with the most frequently observed punch (i.e. jab) 

performed first and the least observed (i.e. uppercuts) performed last (Davis et al., 

2013; 2015; 2017; 2018; El Ashker, 2011; Kapo et al., 2008; Thomson & Lamb, 2016). 

Performance feedback was not provided during the testing procedures. 

 

3.2.4. Data processing 

Kinematic and GRF data was analysed via Qualisys Track Manager (QTM) 

(version 2.14, Qualisys Inc., Gothenburg, Sweden), whereby reflective markers and 

anatomical landmarks were labelled. Thereafter, punch trials were exported to Visual 

3D (Version 6, C-Motion Inc., Rockville, United States) from which full-body joint 

segments and key events were created alongside the calculation of kinematic and 

GRF data. 
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Key events (see below) were identified from visual observations due to the 

differing technical intricacies and punch set-ups across each individual participant (e.g. 

a hook punch performed directly from the guard versus a hook punch thrown from a 

‘bobbing and weaving’ motion). These events were classified as: (i) INITIATION (the 

Figure 3.3. Local coordinate system of the adapted marker model. 

Figure 3.4. Upper-extremity marker set (adapted from Piorkowski et al., 2011; 

Vanrenterghem et al., 2010). 
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initiation of a countermovement prior to the fist being projected towards the punch 

target), identified from the descent of the hand segment markers on the punching hand 

along the longitudinal axis (Figure 3.5); and (ii) CONTACT (one frame prior to the fist 

impacting the punch target), identified from the initial movement of the markers located 

on the punch target (Figure 3.6). These event labels were subsequently used to export 

kinematic and GRF data in ASCII formats to be further analysed in Microsoft Excel 

(Microsoft Corporation, Reading, UK).  

The kinematic variables computed from the punch data were: punch delivery 

time from event markers INITIATION to CONTACT (ms), peak resultant fist velocity of 

the hand segment (defined from ‘radial wrist’, ‘ulnar wrist’, ‘knuckle 1’, and ‘knuckle 5’ 

tracking markers) from INITIATION to CONTACT (m/s), peak resultant shoulder joint 

angular vector velocity (shoulder joint defined from upper arm tracking markers relative 

to the defined thorax/ab segment) from INITIATION to CONTACT (deg/s), peak 

resultant elbow joint angular vector velocity (elbow joint defined from the upper arm 

and forearm tracking markers) from INITIATION to CONTACT (deg/s), peak flexion-

extension lead and rear hip joint angles (hip joint defined from thigh tracking markers 

relative to the pelvis) from INITIATION to CONTACT (deg), peak flexion-extension 

lead and rear knee joint angles (knee joint defined from thigh and shank cluster 

markers) from INITIATION to CONTACT (deg), peak flexion-extension lead and rear 

ankle joint angles (ankle joint defined from ‘heel’, ‘lateral ankle’, ‘medial ankle’, ‘toe 1’ 

and ‘toe 5’ tracking markers) from INITIATION to CONTACT (deg), peak flexion-

extension lead and rear hip joint angular vector velocities from INITIATION to 

CONTACT (deg/s), peak flexion-extension lead and rear knee joint angular vector 

velocities from INITIATION to CONTACT (deg/s), and peak flexion-extension lead and 

rear ankle joint angular vector velocities from INITIATION to CONTACT (deg/s). 
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Peak joint velocity timings (% movement) were quantified from the timing of 

peak angular joint velocity (shoulder and elbow) from punch data normalised to 101 

data points. All marker data were sampled at a rate of 300 Hz and filtered using a low-

pass Butterworth filter with a cut-off frequency of 12 Hz (see Appendix 2) prior to and 

after the computer link-model based data had been generated to reduce the potential 

noise in the signal (as suggested in previous boxing-related research; Piorkowski et 

al., 2011). This cut-off frequency was deemed appropriate following pilot work whereby 

data were visually inspected for unwanted signal noise. The same data processing 

methods were implemented across the data-set, meaning any potential errors were 

consistent.  

 The kinetic variables computed from the punch data were: peak lead leg 

resultant GRF, peak rear leg resultant GRF, total lead leg net braking impulse, lead 

leg vertical impulse, total rear leg net propulsive impulse, total rear leg vertical impulse, 

peak lead hip joint flexor-extensor moment, peak rear hip joint flexor-extensor 

moment, peak lead knee joint flexor-extensor moment, peak rear knee joint flexor-

extensor moment, peak lead ankle joint flexor-extensor moment and peak rear ankle 

joint flexor-extensor moment (all from INITIATION to CONTACT). Peak GRF timings 

(% movement) were quantified from the timing of peak lead and rear leg GRF from 

punch data normalised to 101 data points. GRF data were sampled at 900 Hz and 

low-pass filtered using a 4th-order Butterworth filter with a cut-off frequency of 100 Hz 

selected based on recommendations in previous research for baseball pitching (1000 

Hz sampling rate, 20 Hz cut-off frequency - Huang & Lin, 2011), discus throwing (1000 

Hz sampling rate - Yu, Broker, & Silvester, 2002), overarm throwing (960 Hz sampling 

rate, 40 Hz cut-off frequency - Ramsey, Crotin, & White, 2014), and punching (1000 

Hz sampling rate, 100 Hz cut-off frequency - Lenetsky et al., 2019) across all assessed 
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variables. In addition, a period of pilot work was also completed whereby data was 

visually inspected for discrepancies (i.e. unwanted noise, over-smoothing) to ensure 

the applied cut-off frequency was high as possible to acquire accurate joint kinetic and 

kinematic data whilst minimising potential errors (Bezodis, Salo, & Trewartha, 2011). 

A range of sample rates (500-3000 Hz) and cut-off frequencies (20-1000 Hz) were 

analysed using data gathered during pilot work, with the chosen sampling rate (900 

Hz) and cut-off frequency (100 Hz) deemed the most suitable. Though the selected 

processing techniques were considered to be adequate for the current study, it is 

acknowledged that a different cut-off frequency or filter variation could have been 

employed that may have produced more accurate data values. Similarly to the 

kinematic variables, the same data processing methods were implemented across the 

data-set, meaning any potential errors were consistent across the entire dataset. Peak 

joint moments were filtered at 12 Hz based upon previous research analysing 

dynamic/ballistic full-body tasks (Dai, Mao, Garrett, & Bing, 2015; Farana et al., 2014; 

Fleisig, Barrentine, Zheng, Escamilla, & Andrews, 1999; Peng, Huang, & Kernozek, 

2007; Williams, 2012; Yu & Andrews, 1998). Lead leg net braking impulse (negative 

Fy), rear leg net propulsive impulse (positive Fy) and vertical impulse (Fz) of both legs 

were calculated as the sum of frame-by-frame GRF x time from INITIATION to 

CONTACT. All GRF data (peaks, moments and impulses) were normalised to 

participant’s body mass (N/kg). 

3.2.5. INITIATION key event identification 

The instant of INITIATION for each punch type was subject to test-retest intra-observer 

reliability testing. For each punch type, ten trials were randomly selected for analysis 

with the time between force plate contact (recorded objectively by the Kistler platforms) 

and punch initiation (determined by the lead researcher) recorded in Visual 3D. 
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Analysis revealed INITIATION identification was consistent across punch trials, with 

low typical error (Hopkins, 2000), low CV% (Roberts & Priest, 2006), and narrow limits 

of agreement (Bland & Altman, 1999) observed for each punch type (Table 3.1). 

Consequently, the reliability of punch INITIATION was deemed acceptable given the 

variation was unlikely to have had a meaningful impact upon the interpretation of the 

dependent variables (i.e. punches remained distinguishable from one another). 
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Figure 3.5. Rear uppercut INITIATION event. 

Figure 3.6. Rear uppercut CONTACT event. 
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Table 3.1. Reliability statistics for the identification of INITIATION (time between the instance of force plate contact to the 
point of punch initiation). 

 Jab Rear-hand cross Lead hook Rear hook Lead uppercut Rear uppercut 

Random 
punch trial 

Test Retest Test Retest Test Retest Test Retest Test Retest Test Retest 

1 0.25 0.23 1.27 1.29 0.59 0.57 1.27 1.29 2.17 2.17 0.19 0.15 

2 3.30 3.33 1.27 1.28 0.62 0.65 1.27 1.28 1.82 1.8 0.72 0.68 

3 0.32 0.27 1.91 1.93 3.13 3.15 1.91 1.93 1.97 1.98 0.51 0.49 

4 0.25 0.27 0.04 0.05 0.59 0.59 0.04 0.05 1.23 1.23 0.35 0.33 

5 2.98 2.99 0.38 0.38 0.10 0.08 0.38 0.38 1.19 1.18 0.60 0.61 

6 0.11 0.11 0.49 0.5 1.02 1.00 0.49 0.5 2.69 2.67 1.48 1.47 

7 1.84 1.79 0.43 0.42 2.53 2.52 0.43 0.42 1.29 1.3 1.83 1.85 

8 1.65 1.65 1.62 1.61 0.46 0.43 1.62 1.61 0.56 0.57 1.74 1.72 

9 0.27 0.27 0.02 0.04 0.10 0.11 0.35 0.34 0.03 0.05 1.69 1.63 

10 1.86 1.84 0.77 0.74 0.31 0.33 0.77 0.74 0.19 0.20 0.01 0.01 

 

M ± SD 
1.28 ± 
1.21 

1.28 ± 
1.22 

0.82 ± 
0.66 

0.82 ± 
0.66 

0.95 ± 
1.03 

0.94 ± 
1.04 

0.85 ± 
0.62 

0.85 ± 
0.63 

1.31 ± 
0.87 

1.32 ± 
0.86 

0.81 ± 
0.83 

0.80 ± 
0.82 

       
TE (s) 0.01 0.01 0.01 0.01 0 0.01 
CV (%) 2.69 0.1 3.95 2.64 4.3 2.77 

95% LoA (s) 0.09 ± 0.05 0 ± 0.05 0 ± 0.04 0 ± 0.03 0 ± 0.02 0.01 ± 0.05 

 
M ± SD = mean ± standard deviation 
S = seconds 
TE (%) = Typical error 
95% LoA = 95% limits of agreement 
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3.2.6. Statistical analysis 

Descriptive statistics (mean ± SD) were generated for all dependent variables and 

their distributions checked for normality via Shapiro-Wilk tests utilising SPSS (version 

23, Chicago, USA). As these conditions were met, a one-way repeated measures 

analysis of variance (ANOVA) was used to compare mean values across punch types 

with Bonferroni-adjusted t-tests adopted as a post-hoc procedure to identify where 

specific differences existed.  Effect sizes were calculated as: d = (�̅�1- 𝑥 ̅2) / SD; where 

�̅�1 and �̅�2 represent the two sample means and SD the pooled standard deviation. 

The magnitude of Cohen’s d effect sizes were classified as: trivial < 0.2, small 0.2-0.6, 

moderate 0.6-1.2, large 1.2-2.0, and very large > 2.0 (Hopkins, 2004). Furthermore, 

the relationships between kinematic and GRF (lead and rear leg), impulse (lead and 

rear leg net braking, net propulsive and vertical), and peak resultant fist velocity were 

assessed via the Pearson product-moment coefficient (with 95% confidence intervals) 

and interpreted with the thresholds: < 0.1 (trivial); 0.1-0.3 (small); 0.3-0.5 (moderate); 

0.5-0.7 (large); 0.7-0.9 (very large) and > 0.9 (nearly perfect) (Hopkins, 2002).  

 

3.3. Results 

3.3.1. Ankle, knee and hip joint angle  

The effect of punch type was significant for both lead (F (2.9, 39.8) = 5.2, P = 0.004) and 

rear peak flexion-extension ankle angles (F (2.9, 49.5) = 5.8, P = 0.002). Post-hoc 

analysis revealed significant differences between all lead hand punches (jab, lead 

hook and lead uppercut) compared to all rear hand punches (rear-hand cross, rear 

hook and rear uppercut) for peak extension angle of the lead ankle (P = 0.001-0.018, 



   

139 
 

ES = 1.4-1.7). Meanwhile, significant differences were also observed between the jab 

and all other punch types for the rear ankle (extension angle) (P = 0.001-0.018, ES = 

1.2-1.6). 

Punch type had a significant effect on peak lead knee flexion-extension joint 

angle (F (3.0, 42.3) = 5.8, P = 0.002), with significantly higher values evident in the all of 

the lead hand punches compared to all rear hand punches (P = 0.007-0.019, ES = 

1.5-1.6). For peak rear knee flexion-extension joint angle, the effect of punch type was 

not significant (F (3.4, 48.4) = 2.4, P = 0.068). 

A significant punch type effect was noted for peak lead hip flexion-extension 

angle (F (2.3, 43.2) = 20.4, P < 0.001), as it also was for peak rear hip flexion-extension 

angle (F (2.2, 31.1) = 32.7, P < 0.001). The lead hook had the greatest peak lead hip 

extension angle, being almost three times that of the rear-hand cross, rear hook and 

rear uppercut (ES = 1.6-1.8), respectively. Meanwhile, for the rear hip, the rear-hand 

cross exhibited the greatest peak extension angle, which was significantly greater than 

the jab, lead hook and lead uppercut (P < 0.001, ES = 1.8-2.0), but no other rear hand 

punches. 

 

3.3.2. Ankle, knee and hip joint angular velocity  

Peak lead ankle joint flexion-extension angular velocities were consistently lower than 

observed for the rear ankle, though both variables had a significant punch type effect 

((lead ankle - F (3.5, 49.7) = 1.9, P = 0.008; rear ankle - (F (3.6, 51.5) = 9.0, P < 0.001)). The 

lead hook exhibited the greatest peak lead ankle joint extension velocity and was 

significantly larger than the jab and rear-hand cross (P = 0.004-0.046, ES = 1.0-1.2). 
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Meanwhile, the jab produced the largest peak extension angular velocity for the rear 

ankle compared to other punch types, though these differences were not significant 

(P = 0.073-0.166, ES = 0.3-0.8). 

 Peak lead knee joint flexion-extension angular velocity was significant 

according to punch type (F (3.6, 51.2) = 3.5, P = 0.015), as was peak rear knee joint 

flexion-extension angular velocity (F (4.2, 59.2) = 3.8, P = 0.006). The lead hook exhibited 

significantly greater peak lead knee extension angular velocities than the jab, rear-

hand cross, rear hook and rear uppercut (P = 0.003-0.039, ES = 1.5-1.7), while the 

only significant punch difference observed for the rear knee (peak extension angular 

velocity) was between the jab and lead hook (P = 0.045, ES = 1.0). 

Punch type had a significant effect on peak lead hip joint flexion-extension 

angular velocity (F (2.8, 40.5) = 16.1, P < 0.001), with significantly higher extension angles 

evidenced for the lead hook compared to the rear-hand cross, rear hook and rear 

uppercut, respectively (P < 0.000-0.047, ES = 0.9-1.2). Peak rear hip joint flexion-

extension angular velocity was also significant different between punch types (F (3.1, 

44.0) = 16.3, P < 0.001), with the rear uppercut exhibiting significantly higher peak 

extension angles than the lead hook and lead uppercut, respectively (P < 0.000-0.008, 

ES = 1.3-1.7). 
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Table 3.2a. Kinematic variable values of punch techniques. 

 Jab Rear-hand cross Lead hook Rear hook Lead uppercut Rear uppercut 

Peak lead ankle 

joint angle (deg) 
72.8 ± 6.1C, RH, LU 50.1 ± 7.0J, LH, LU 77.1 ± 4.2C, RH, LU 48.3 ± 7.0J, LH, LU 76.6 ± 9.7C, RH, LU 54.7 ± 4.9J, LH, LU 

Peak rear ankle 

joint angle (deg) 
96.0 ± 5.3C, LH, LU 94.9 ± 7.1J 77.4 ± 7.7J 90.3 ± 6.0 67.1 ± 7.4J 91.7 ± 7.3 

Peak lead ankle 

joint angular velocity 

(deg/s) 

84.4 ± 25.9LU 87.9 ± 25.6LU 121.5 ± 30.5J, C 114.5 ± 28.6 113.3 ± 25.1 105.0 ± 33.0 

Peak rear ankle 

joint angular velocity 

(deg/s) 

154.6 ± 26.2 123.7 ± 30.7 146.8 ± 28.7 130.1 ± 23.7 131.7 ± 30.4 140.6 ± 34.9 

Peak lead knee joint 

angle (deg) 
47.2 ± 8.7C, RU 28.6 ± 10.4J, LH, LU 50.3 ± 9.8C, RU  31.0 ± 7.9J, LH, LU 49.2 ± 9.3 C, RU 28.5 ± 8.6J, LH, LU 

Peak rear knee joint 

angle (deg) 
62.9 ± 6.6LU 59.9 ± 11.4 50.1 ± 11.6 58.3 ± 9.1 48.7 ± 8.8J 57.9 ± 7.4 

Peak lead knee joint 

angular velocity 

(deg/s) 

158.0 ± 37.8LH, LU 146.9 ± 39.4LH, LU 244.5 ± 28.8J, C, RH, RU 154.9 ± 42.9LH, LU 217.3 ± 39.6J, C, RH, RU 173.0 ± 38.7J, C, LH, RH 

Peak rear knee joint 

angular velocity 

(deg/s) 

263.8 ± 34.0LH 255.7 ± 45.1 202.0 ± 32.4J 239.5 ± 45.4 228.0 ± 41.7 245.2 ± 38.4 

Peak lead hip joint 

angle (deg) 
89.6 ± 8.9 42.0 ± 9.2LH 124.5 ± 7.7C, RH, RU 46.2 ± 7.9LH 118.7 ± 4.6 45.1 ± 7.4LH 

Peak rear hip joint 

angle (deg) 
35.2 ± 8.2C 166.6 ± 6.8J, LH, LU 58.5 ± 6.3C 159.5 ± 7.5 42.1 ± 4.7C 161.3 ± 7.0 
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Peak lead hip joint 

angular velocity 

(deg/s) 

334.8 ± 74.3C, RH, RU 260.3 ± 130.7J, LH, LU 419.9 ± 91.0C, RH, RU 259.8 ± 104.0J, LH, LU 370.7 ± 94.1C, RH, RU 260.1 ± 91.3J, LH, LU 

Peak rear hip joint 

angular velocity 

(deg/s) 

324.3 ± 91.2LH, LU 378.9 ± 141.6LH, LU, RU 
212.1 ± 73.9J, C, RH, LU, 

RU 
392.8 ± 141.7LH 232.9 ± 57.0J, C, RH, RU 489.3 ± 121.4LH, LU 

Peak shoulder joint 

angular velocity 

(deg/s) 

691.1 ± 135.45LU, RU 
534.5 ± 207.78LH, RH, 

LU, RU 
845.6 ± 142.96C, LU, RU 948.9 ± 228.03C 1062.1 ± 186.16J, C, LH 1069.8 ± 104.50 J, C, LH 

Timing of peak 

shoulder joint 

angular velocity (% 

of movement) 

87 ± 7 91 ± 8 92 ± 12 97 ± 2 96 ± 1 96 ± 1 

Peak elbow joint 

angular velocity 

(deg/s) 

560.6 ± 197.4 399.6 ± 171.8 527.5 ± 183.0 522.3 ± 212.5 651.0 ± 357.5 539.3 ± 139.9 

Timing of peak 

elbow joint angular 

velocity (% of 

movement) 

98 ± 2 99 ± 1 81 ± 10 84 ± 11 76 ± 5 75 ± 7 

Peak fist velocity 

(m/s) 
5.85 ± 0.85C, LH, RH, RU 6.97 ± 0.86J, LH, RH, RU 11.95 ± 1.84J, C 11.48 ± 1.90J, C 10.60 ± 2.30 11.55 ± 1.72J, C 

Punch delivery time 

(ms) 
405 ± 150LH, RH, LU, RU 495 ± 150 657 ± 145J 586 ± 0.96J 627 ± 103J 606 ± 100J 

 
Note: Data is presented as mean ± SD. 
 
J significantly different to the jab (P < 0.01). 
C significantly different to the cross (P < 0.01). 
LH significantly different to the lead hook (P < 0.01). 
RH significantly different to the rear hook (P < 0.01). 
LU significantly different to the lead uppercut (P < 0.01). 
RU significantly different to the rear uppercut (P < 0.01). 
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Table 3.2b. Kinetic variable values of punch techniques. 

 Jab Rear-hand cross Lead hook Rear hook Lead uppercut Rear uppercut 

Peak lead leg GRF 

(N/kg) 
0.63 ± 0.17C, LH, RH, LU, RU 1.06 ± 0.26J, RU 1.09 ± 0.24J 1.13 ± 0.20J, RU 1.35 ± 0.27J 1.35 ± 0.26J, C, RH 

Peak rear leg GRF 

(N/kg) 
1.56 ± 0.35C, LH, RH, LU 1.21 ± 0.27J 0.96 ± 0.23J 1.10 ± 0.23J 1.15 ± 0.32J 1.20 ± 0.28 

Timing of peak lead 

leg GRF (% of 

movement) 

80 ± 9 74 ± 7 71 ± 9 74 ± 6 73 ± 6 74 ± 5 

Timing of peak rear 

leg GRF (% of 

movement) 

64 ± 9 57 ± 11 63 ± 15 58 ± 9 67 ± 11 67 ± 8 

Total lead leg net 

braking impulse 

(N/s/kg) 

-10.1 ± 8.9C, RH, LU -62.5 ± 32.4J -32.6 ± 27.3RH -85.8 ± 37.8J, LH, LU -44.1 ± 20.8J, RH -64.4 ± 56.4 

Total lead leg 

vertical impulse 

(N/s/kg) 

89.7 ± 89.8LH, RH, LU, RU 150.8 ± 77.1LH, LU, RU 386.8 ± 160.2J, C 248 ± 98.3J 368.4 ± 120.9J, C 297 ± 122.7J, C 

Total rear leg net 

propulsive impulse 

(N/s/kg) 

29.2 ± 20.1C, RH 66.6 ± 38.4J, LH 17.7 ± 27.7C, RH, LU 77.9 ± 34.7J, LH 45.8 ± 25.2LH 64.6 ± 54.3 

Total rear leg 

vertical impulse 

(N/s/kg) 

187.8 ± 121 239.3 ± 158.4 268 ± 141.8 255.3 ± 102 256.6 ± 115.8 258.1 ± 114.6 
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Peak lead ankle 

joint moment (N⋅m) 

6.52 ± 

1.6C, LH, RH, RU 

9.61 ± 

4.8J, LH 

12.40 ± 

2.4J, C, RH, LU, RU 

8.50 ± 

2.6J, LH 

8.04 ± 

3.1LH 

9.47 ± 

2.6J, LH 

Peak rear ankle 

joint moment (N⋅m) 

12.54 ± 

2.7LH, LU 

12.17 ± 

3.8LH, LU 

8.20 ± 

4.6J, C, RH, RU 

11.96 ± 

3.4LH, LU 

8.93 ± 

2.9J, C, RH, RU 

12.00 ± 

2.5LH, LU 

Peak lead knee joint 

moment (N⋅m) 

60.28 ± 

17.5C, LH, RH, LU, RU 

161.17 ± 

35.5J, LU 

131.71 ± 

23.1J 

142.69 ± 

38.9J 

96.92 ± 

22.6J 

153.11 ± 

27.5J, LU 

Peak rear knee joint 

moment (N⋅m) 

180.84 ± 

33.3LU 

170.38 ± 

38.4 

 

124.59 ± 

28.3J 

 

169.82 ± 

21.8 

148.54 ± 

31.0 

172.88 ± 

29.5 

Peak lead hip joint 

moment (N⋅m) 

175.23 ±  

23.8LH, LU, RU 

181.54 ± 

56.0LU, RU 

223.16 ± 

52.7RH, LU, RU 

168.81 ± 

39.7 

112.85 ± 

36.3J, C, LH, RH 

116.56 ± 

25.0 

Peak rear hip joint 

moment (N⋅m) 

201.78 ± 

59.8LH 

202.04 ± 

40.4LH  

 

143.31 ± 

41.1J, C 
 

156.81 ± 

67.7 

173.85 ± 

54.9 

189.50 ± 

29.4 

 
Note: Data is presented as mean ± SD. 
 
J significantly different to the jab (P < 0.01). 
C significantly different to the cross (P < 0.01). 
LH significantly different to the lead hook (P < 0.01). 
RH significantly different to the rear hook (P < 0.01). 
LU significantly different to the lead uppercut (P < 0.01). 
RU significantly different to the rear uppercut (P < 0.01). 
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3.3.3. Shoulder and elbow joint angular velocity 

Punch type had a significant effect on peak shoulder joint resultant angular velocity (F 

(2.2, 31.1) = 32.7, P < 0.001), with significantly higher values evident in the two uppercuts 

compared to the other punches (P = 0.001-0.046, ES = 1.0-1.7), apart from the rear 

hook (P = 0.441-1.0, ES = 0.3-0.7). The jab and rear-hand cross had the lowest peak 

resultant velocities of the six punch types at the shoulder joint (Table 3.2a). The timing 

of peak shoulder joint angular velocity occurred earliest in the jab (87 ± 7% of the 

movement), and latest in the rear hook (97 ± 2%). 

Peak elbow angular velocities were consistently lower than observed at the 

shoulder, but interestingly, there was no overall difference in mean values among the 

punch types (F (2.4, 32.9) = 1.9, P = 0.167). However, the highest value was again 

produced by one of the uppercuts (lead), and the lowest by the rear-hand cross. Lead 

and rear uppercuts achieved peak elbow joint angular velocity earlier than all other 

punch types, while the jab and rear-hand cross exhibited the latest peaks (Table 3.2a). 

The jab and rear hand cross exhibited a proximal-to-distal sequence for the 

shoulder and elbow joints, respectively, with the shoulder reaching peak angular joint 

velocity approximately 12 % (jab) and 8.5 % (rear-hand cross) before the elbow 

(Figure 3.7). Meanwhile, hooks and uppercuts did not exhibit upper-limb proximal-to-

distal sequencing as peak angular elbow joint velocity occurred before that of the 

shoulder joint across all hook and uppercut punch types (Figures 3.8 and 3.9).  
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Figure 3.7. Mean (± SD) jab shoulder and elbow joint angular velocities from 
INITIATION to CONTACT. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. Mean (± SD) lead hook shoulder and elbow joint angular velocities from 
INITIATION to CONTACT. 
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Figure 3.9. Mean (± SD) lead uppercut shoulder and elbow joint peak angular 
velocities from INITIATION to CONTACT. 

 

 

3.3.4. Fist velocity and delivery time 

The effect of punch type on peak resultant fist velocity was significant (F (2.1, 29.8) = 

35.1, P < 0.001), with the highest (lead hook) exhibiting a value twice that of the lowest 

(jab). Post-hoc analysis (Table 3.2a) confirmed this difference and that between the 

jab and all the other punch types to be significant (P = 0.001-0.018, ES = 1.1-1.8). A 

significant punch type effect was noted for delivery time (F (2.3, 41.4) = 20.2, P < 0.001), 

principally on account of the jab’s markedly shorter mean time than all other punch 

types (P < 0.001, ES = 1.2-1.3), except for the rear-hand cross (P = 0.034, ES = 0.6) 

(Table 3.2a). The lead hook took the longest to deliver, being 62% and 33% greater 

than the jab (ES = 1.3) and rear-hand cross (ES = 1.0), respectively.  
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3.3.5. Ground Reaction Force (GRF)  

Peak resultant lead leg GRF was significantly different according to punch type (F (3.6, 

50.8) = 32.5, P < 0.001), being largest in the lead and rear uppercut punches and 

smallest in the jab (Table 3.2b). Post-hoc analysis revealed the mean jab value to be 

significantly lower than all the other punches (P < 0.001, ES = 1.2-1.6). Punch type 

was also influenced for peak resultant rear leg GRF (F (3.02, 42.31) = 14.2, P < 0.001), 

with the jab producing the greatest value (Figure 3.10), being significantly higher than 

all other punch types (P = 0.001-0.004, ES = 0.8-1.4), except for the rear uppercut (P 

= 0.037, ES = 0.8). Differences of approximately 100 N were apparent between the 

two hook punches (lead and rear, ES = 0.6) and between the two uppercuts (lead and 

rear, ES = 0.4), but neither were significant. The comparison of peak lead and rear leg 

resultant GRF across punch types was significant for the jab punch only (t (14) = -11.7, 

P < 0.001, ES = 1.6). Furthermore, peak vertical GRF accounted for a larger degree 

of the total peak GRF than anteroposterior or mediolateral GRF for both lead and rear 

legs across all punch types (Figure 3.11).  

The timing of peak lead leg GRF occurred earliest in the lead hook (71 ± 9% of 

the movement), and latest in the jab (84 ± 7%). The rear-hand cross generated the 

earliest peak rear leg GRF (56 ± 9% - see Figure 3.10) across punch types, while the 

lead uppercut exhibited the latest peak (71 ± 7%). 



   

149 
 

 

Figure 3.10. Mean (± SD) rear-hand cross peak lead and rear leg GRF from 
INITIATION to CONTACT. 

 

 The effect of punch type on lead leg net braking impulse was significant (F (2.44, 

34.1) = 13.9, P < 0.001), with the highest (rear hook) exhibiting a value more than eight 

times that of the lowest (jab) (ES = 1.6). Post-hoc analysis (Table 3.2b) confirmed this 

difference to be significant, as were the differences between the jab and rear-hand 

cross, and lead uppercut (P < 0.001, ES = 1.5-1.6). Differences between the lead hook 

and rear hook were also significant (P < 0.001, ES = 1.3). Additionally, punch type had 

a significant effect on lead leg vertical impulse (F (3.3, 46.8) = 26.4, P < 0.001), with the 

jab and rear-hand cross (which had the lowest lead leg vertical impulse values), 

significantly different to the lead hook and both uppercuts (P = 0.001-0.002, ES = 1.2-

1.6), but not each other. 

A significant punch type effect was noted for rear leg net propulsive impulse (F 

(2.8, 39.7) = 9.8, P < 0.001), primarily resulting from the notably lower impulse value 
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exhibited by the lead hook compared to the rear-hand cross, rear hook, and lead 

uppercut (P = 0.001-0.002, ES = 1.0-1.4). No significant differences were observed 

for rear leg vertical impulse according to punch type (F (3.1, 43.0) = 1.5, P = 0.099), with 

four of the six punch types exhibiting comparable values (Table 3.2b). Post-hoc 

analysis revealed the largest difference was between the jab and lead hook, but this 

was not significant (P = 0.35, ES = 0.6). 

 

3.3.6. Ankle, knee and hip joint moments 

Peak lead ankle extensor joint moment was significantly different according to punch 

type (F (2.8, 39.8) = 49.6, P < 0.001), being largest in the lead hook and smallest in the 

jab (Table 3.2b). Post-hoc analysis revealed the mean jab value to be significantly 

lower than all other punches (P < 0.001, ES = 1.0-1.6), except for the lead uppercut 

(P = 0.066, ES = 0.6). Punch type was also influenced for the rear ankle (F (3.02, 42.31) = 

14.2, P < 0.001), with the jab producing the largest peak extensor value which was 

significantly greater than the lead hook and lead uppercut (P < 0.001, ES = 1.1-1.2), 

but not the rear-hand cross, rear hook or rear uppercut (P < 0.001, ES = 0.1-0.2) (Table 

3.2b).  

A significant punch type effect was noted for peak lead knee joint extensor 

moment (F (3.5, 49.4) = 30.0, P < 0.001), primarily on account of the jab’s markedly lower 

peak value than all other punch types (P < 0.000-0.002, ES = 1.5-1.7) (Table 3.2b). 

Peak rear knee joint extensor moment also exhibited a significant punch type effect (F 

(3.7, 52.6) = 35.6, P < 0.001), though the only the jab and lead hook were different to each 

at a level of significance (P = 0.008, ES = 1.2). 
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The effect of punch type on peak lead hip joint extensor moment was significant 

(F (2.6, 36.5) = 18.0, P < 0.001), with the highest peak (lead hook) almost twice that of 

the lowest (lead uppercut). Post-hoc analysis (Table 3.2b) confirmed this difference 

and that between the lead hook and rear uppercut to be significant (P = 0.002-0.007, 

ES = 1.4-1.5). For the rear hip, punch type effect was also significant (F (3.5, 49.9) = 7.8, 

P < 0.001), with the rear-hand cross exhibiting a significantly higher extensor moment 

than the lead hook (P = 0.011, ES = 1.1), but no other punch types. 

 

3.3.7. Relationship between peak resultant fist velocity and GRF, impulse, and 

kinematic variables 

Peak lead leg resultant GRF correlated with peak resultant fist velocity (r = 0.56) and 

peak shoulder joint resultant angular velocity (r = 0.55) of the lead hook (Table 3.3). 

Furthermore, peak elbow joint resultant angular velocity was strongly associated with 

jab (r = 0.78) and lead hook peak (r = 0.57) fist velocities, respectively. All other 

associations were generally weak and non-significant. 
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Figure 3.11. Peak lead and rear leg GRF (mean + SD) in mediolateral, anteroposterior, and vertical planes of motion across punch 
types (in accordance with the laboratory co-ordinate system).
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Table 3.3.  Pearson correlations (± 95% CI) between peak resultant fist velocity (FV) and kinematic and kinetic variables. 
 

 Jab FV Rear-hand cross FV Lead hook FV Rear hook FV Lead uppercut FV Rear uppercut FV 

Peak shoulder joint angular 

velocity (deg/s) 

0.35  

(-0.20 to 0.91) 

0.05 

(-0.54 to 0.65) 

0.55* 

(0.05 to 1.05) 

0.40 

(-0.14 to 0.95) 

0.08 

(-0.51 to 0.68) 

-0.04 

(-0.64 to 0.55) 

Timing of peak shoulder joint 

angular velocity (% of movement 

-0.33 

(-0.90 to 0.22) 

0.12 

(-0.47 to 0.71) 

0.02 

(-0.57 to 0.62) 

-0.20 

(-0.79 to 0.38) 

0.02 

(-0.57 to 0.62) 

0.009 

(-0.59 to 0.60) 

Peak elbow joint angular velocity 

(deg/s) 

0.78*  

(0.31 to 1.13) 

0.02 

(-0.57 to 0.61) 

0.57* 

(0.08 to 1.06) 

0.19 

(-0.39 to 0.78) 

-0.23 

(-0.81 to 0.35) 

-0.16 

(-0.75 to 0.42) 

Timing of peak elbow joint 

angular velocity (% of 

movement) 

-0.16 

(-0.75 to 0.43) 

0.28 

(-0.29 to 0.85) 

-0.27 

(-0.84 to 0.30) 

0.05 

(-0.54 to 0.64) 

-0.29  

(-0.87 to 0.27) 

-0.28 

(-0.86 to 0.28) 

Punch delivery time (ms) 
0.45  

(-0.07 to 0.98) 

0.34 

(-0.22 to 0.90) 

-0.41 

(-0.96 to 0.13) 

0.39 

(-0.15 to 0.94) 

-0.08 

(-0.68 to 0.51) 

0.18 

(-0.40 to 0.77) 

Peak lead leg GRF (N/kg) 
-0.24 

(-0.82 to 0.34) 

0.12 

(-0.47 to 0.71) 

0.56* 

(0.07 to 1.06) 

0.28 

(-0.28 to 0.86) 

0.22 

(-0.36 to 0.80) 

-0.09 

(-0.68 to 0.50) 

Peak rear leg GRF (N/kg) 
0.11 

(-0.48 to 0.70) 

0.35 

(-0.20 to 0.91) 

0.10 

(-0.48 to 0.70) 

0.28 

(-0.28 to 0.86) 

-0.46 

(-0.99 to 0.06) 

-0.05 

(-0.65 to 0.54) 

Total lead leg net braking 

impulse (N/s/kg) 

0.30 

(-0.26 to 0.87) 

0.46 

(-0.88 to 0.25) 

0.25 

(-0.41 to 0.76) 

0.33 

(-0.90 to 0.22) 

0.21 

(-0.39 to 0.77) 

-0.51 

(-1.02 to 0.00) 

Total lead leg vertical impulse 

(N/s/kg) 

0.12 

(-0.58 to 0.61) 

-0.13 

(-0.14 to 0.95) 

0.06 

(-0.85 to 0.29) 

0.39 

(-0.16 to 0.94) 

0.04 

(-0.62 to 0.57) 

-0.20 

(-0.79 to 0.37) 

Total rear leg net propulsive 

impulse (N/s/kg) 

0.41 

(-0.12 to 0.96) 

0.35 

(-0.27 to 0.87) 

0.09 

(-0.92 to 0.18) 

0.33 

(-0.22 to 0.90) 

0.10 

(-0.98 to 0.08) 

0.53* 

(0.02 to 1.03) 

Total rear leg vertical impulse 

(N/s/kg) 

0.47 

(-0.05 to 1.00) 

0.35 

(-0.24 to 0.89) 

0.04 

(-0.99 to 0.06) 

0.25 

(-0.32 to 0.83) 

0.12 

(-1.00 to 0.04) 

-0.07 

(-0.67 to 0.52) 

 

* denotes statistically significant at P < 0.05 level. 
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3.4. Discussion 

3.4.1. Kinematic variables 

The superior peak fist velocities of hook punches over straights and uppercuts 

corroborate the findings of Piorkowski at al. (2011) who also noted lead and rear hook 

generated greater fist velocities than the jab and rear-hand cross, respectively. This 

can be explained by the greater range of motion available at the shoulder joint in 

comparison to the elbow (Piorkowski et al., 2011; Loturco et al., 2016; Whiting et al., 

1988) and that hook punches also have a longer trajectory and subsequent 

acceleration pathway, facilitating the generation of greater end-point fist velocities than 

straight punches (Piorkowski, 2009). In contrast to Piorkowski et al. (2011), the lead 

hook, and not the rear hook, exhibited the greatest peak resultant fist velocity of all 

punch types. This conflict is likely a consequence of the computer-based scoring 

system used in 2011. That is, a high frequency of jab punches alongside an ‘effective’ 

rear hand punch, particularly the rear hook (Davis et al., 2013; 2015) was favoured for 

points scoring. Accordingly, the boxers assessed in Piorkowski et al. (2011) probably 

possessed greater technical competency for the rear hook than those in the present 

study. Under the current scoring system (‘10-point must’), boxers execute lead hook 

punches more frequently (Davis et al., 2018; Thomson & Lamb, 2016), and likely 

possess an improved aptitude for this technique. 

 A notable finding was that of the rear uppercut generating greater peak fist 

velocities than both the rear-hand cross and rear hook. Such punches are deemed to 

be the hardest to master in boxing (Kapo et al., 2008), and are the most infrequent 

punch type observed in competition (Davis et al., 2018) owing to the close proximity 

between boxers and their counter-attacking nature (Hristovski et al., 2006; Thomson 
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& Lamb, 2016). Cabral et al. (2010) suggested that the high fist velocities generated 

by the rear uppercut occur as a result of a forceful proximal-to-distal sequence. Whilst 

such sequencing also plays a role in straight (Cheraghi et al., 2014) and hook 

(Piorkowski et al., 2011) punches, the position of the punching arm relative to the 

centre of mass during a rear uppercut is likely optimal for generating muscular torque 

at the shoulder joint (Cabral et al., 2010).  

The shortest delivery times across all punch types were observed in the straight 

punches owing to their linear trajectory from the ‘guard’ position and travelling the least 

distance to the target (Piorkowski et al., 2011). As expected, the jab possessed the 

lowest delivery time, which in part explains why it is the most frequently executed 

punch within competition (Davis et al., 2013; 2015; 2018; El Ashker, 2011; Kapo et al., 

2008; Thomson & Lamb, 2016). As a consequence, it can be employed in various 

ways; to judge and/or maintain the distance between opponents (limiting their counter-

attacking opportunities), facilitate a positive impression among judges and create 

opportunities to land more forceful punches (such as the rear-hand cross or lead hook) 

(Haislet, 1968; Markovic et al., 2016), and provide an opponent with less time to 

defend/evade it, increasing its likelihood of landing cleanly (Piorkowski et al., 2011). 

That hook and uppercut delivery times were not significantly different for both 

lead and rear hand variations was interesting, given that, regardless of ability level, 

the uppercut is the least frequently used punch in competition (Davis et al., 2018; El 

Ashker, 2011; Thomson & Lamb, 2016). Therefore, as uppercuts possess similar 

delivery time to hooks and can cause considerable ‘damage’ to an opponent resulting 

from their vertical trajectory (i.e. travel underneath an opponent’s line of vision), 

unpredictability (due to their limited use in competition), and large impact forces (Arus, 

2013; Cabral et al., 2010; Slimani et al., 2017; Thomson & Lamb, 2016; Viano et al., 
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2005), coaches and boxers should take heed of this finding and consider an increased 

application of uppercuts in training and competition. 

Perhaps unsurprisingly given the above observation, both types of uppercut 

exhibited the greatest peak values for shoulder-joint angular velocity, with the lead 

uppercut also generating the highest peak elbow-joint angular velocity values of all 

punch types. As the kinematics of the lead uppercut have not been described 

previously, this is a novel finding. 

However, with regards to the timings of peak shoulder and elbow joint angular 

velocities, only straight punches (jab and rear-hand cross) exhibited a proximal-to-

distal sequence of the upper limbs. This is in agreement with previous studies that 

have reported shoulder angular velocity peaks prior to the elbow during the rear-hand 

cross (Cheraghi et al., 2014; Turner et al., 2011). That such a sequence was evident 

for the jab also has not been observed before. It is suggested that hooks and uppercuts 

failed to exhibit a proximal-to-distal sequence due to the ‘fixed’ elbow positions 

associated with these punch types. Indeed, during straight punches, the elbow joint 

rapidly extends after the punching arm has already started accelerating towards the 

target via angular velocities generated at the shoulder joint (Cheraghi et al., 2014; 

Jessop & Pain, 2016). However, during hooks and uppercuts, the elbow is flexed to a 

‘fixed’ ~90° angle whilst the shoulder exhibits a rapid combination of abduction 

followed by flexion, protraction, and adduction from INITIATION to CONTACT, which 

may explain why peak angular velocities at the shoulder joint were markedly higher 

than those at the elbow across hooks and uppercuts. Consequently, it appears peak 

elbow joint angular velocity occurs prior to the elbow’s ~90° position during hooks and 

uppercuts, and may assist in generating additional kinetic energy that, in conjunction 
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with the angular velocities generated at the shoulder, accelerate the fist rapidly 

towards the target.   

The peaks and timing of peak angular joint velocities for the shoulder and 

elbow, respectively, provide noteworthy information regarding the role of each joint 

across different punches and the degree to which they contribute to the end product 

of a punch (fist velocity and delivery time). This data provides useful information for 

coaches and boxers that may assist in the development of RT strategies. More 

specifically, RT strategies designed to augment angular velocities generated at the 

shoulder and elbow across various punch-specific positions (e.g. shoulder abducted 

to 90° relative to the torso for lead and rear hooks), and subsequently, the ‘damage’ 

potential of specific punch types, ought to be implemented. 

 

3.4.2. Kinetic (GRF, impulse and joint moments) variables 

Based on previous studies which have highlighted the importance of the lead leg to 

lead hand punches and the rear leg to rear hand punches (Cheraghi et al., 2014; 

Turner et al, 2011; Yan-ju et al., 2013), it was expected that the lead leg would produce 

greater GRF during lead hand punches, and likewise rear leg for rear hand punches. 

However, the current findings revealed that uppercuts (lead and rear) generated the 

greatest peak resultant GRF values for the lead leg across punch types (see Table 1). 

Moreover, it was interesting to find that both uppercuts produced greater peak lead 

leg resultant GRF values than straight and hook punches. In the absence of related 

research to assist interpretation for this finding, it is suggested that force orientation is 

a contributory factor in such movements (Bahamonde & Knudson, 2001; Morin, 

Edouard, & Samozino, 2011; Plessa, Rousanoglou, & Boudolos, 2010). That is, 
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uppercuts (lead and rear) may generate the greatest peak lead leg resultant GRF 

owing to the larger peak lead leg vertical GRF values recorded for these punch types 

(in comparison to straights and hooks), alongside the predominantly vertical trajectory 

of the fist and a potential symbiotic relationship between these two characteristics.  

That the rear uppercut generated higher peak lead leg resultant GRF than the 

jab and lead hook, respectively, was unexpected, as was the lead hook producing the 

greatest vertical impulse, while the rear hook generated the largest net braking 

impulse. It is possible that these findings relate to the influence of the lead leg in 

producing a stable base from which to generate force proximally to the distal segments 

(i.e. the fist) (Cabral et al., 2010). Such a role has been reported for other activities 

requiring movements with lower-body kinematics similar to those of rear hand punches 

(i.e. triple extension of the hip, knee and ankle; trunk rotation; rapid projection of the 

arm). For example, Bartonietz (1994) noted that the lead leg produced forces up to 

three times that of the rear leg in shot putting (no values though reported), while McCoy 

et al. (1984) determined ~95% of ‘shot velocity’ (i.e. velocity of the shot put when 

released from the hand) was influenced by vertical braking forces produced by the 

lead leg. Furthermore, the majority of lead leg GRF and impulse was concentrated in 

a vertical direction (see Table 1 and Figure 11), which is similar to findings observed 

in the above activities and baseball pitching (MacWilliams, Choi, Perezous, Chao & 

MacFarland, 1998). The considerable vertical GRF, net braking, and vertical impulse 

result from the extensive braking demands (rapid eccentric muscular contractions to 

prevent excessive knee flexion) that assist in facilitating the propulsive vertical forces 

generated by the rear leg to travel superiorly to the distal segments of the body (i.e. 

fist/hand) (Williams, 2012). This corroborates previous boxing research which has 

highlighted that during the rear-hand cross punch, the ability of a boxer to maintain a 
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rigid lead leg (through the production of vertical anterior-posterior braking forces (i.e. 

impulse)), generation of lower-limb joint extensor moments and extension angular 

velocities, and ability to control the degree of lead knee flexion (i.e. production of 

isometric force to limit excessive/unwanted flexion) may assist in the transmission of 

force from the lower limbs to the arm/hand segments via the kinetic chain (Cheraghi 

et al., 2014; Turner et al., 2011). The current findings suggest the braking forces (GRF 

and impulse) and stabilisation of the lead leg, in addition to lead hip, knee and ankle 

joint extension angles, angular extension velocities and extensor moments, play a role 

in the execution of both lead and rear uppercuts, and that they are more evident than 

for the rear-hand cross. 

The observed higher GRF values of the rear leg, rear-hand cross, rear hook 

and rear uppercut techniques relative to the lead hook and lead uppercut, confirm the 

importance of the rear leg to rear hand punches noted previously (Cheraghi et al., 

2014; Filimonov et al., 1985; Gulledge & Dapena, 2008; Turner et al. 2011). However, 

that the rear leg produced ~71% of the total GRF during the jab, greater than for any 

other punch type, was a novel finding. It is therefore plausible to suggest that the jab 

is less reliant on trunk rotation and upper-body stretch-shortening cycle 

characteristics, and instead, requires a high degree of rear leg resultant GRF to propel 

the fist rapidly along the anterior-posterior axis towards the opponent/target. This 

theory is supported by the rear hip, knee and ankle joint extensor moments, peak rear 

knee and ankle joint extension angles and extension velocities, respectively, of which 

were all greatest for jab in comparison to all other punch types. Indeed, torque and 

GRF generated by the rear leg is likely to have transmitted force through the kinetic 

chain via a sequence of ankle, knee and hip joint extensions and extensor moments 

that culminated in the rapid projection of the lead fist to the target with a lesser reliance 
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on upper-extremity SSC characteristics. Indeed, in the example of the jab, the rear leg 

produced peak GRF at 64% of the punch that is likely to have facilitated the sequential 

peaks in rear ankle (66%), knee (78%), and hip (80%) joint angular extension 

velocities, respectively. This is likely to have subsequently contributed to the 

generation of peak shoulder (87%), and elbow (98%) joint velocities, that assisted in 

projecting the punching fist to the punch target. 

The peaks and timing of peak GRF for the lead and rear legs offer useful 

information concerning the role each leg across punch types and how they potentially 

influence other biomechanical variables (e.g. upper-limb kinematics). During the jab 

and rear hand punches (rear-hand cross, rear hook and rear uppercut), the timings of 

peak GRF appear to corroborate suggestions in previous research that force 

generated by the rear leg is the primary motion that initiates these techniques (Cabral 

et al., 2010; Cheraghi et al., 2014, Lenetsky et al., 2013; Turner et al., 2011). Indeed, 

it appears that rear leg GRF peaks first in order to produce momentum from the ground 

that initiates the generation of kinetic energy, from which the lead leg then peaks to 

provide a stable, rigid base that assists in facilitating the transfer of kinetic energy 

through the hips, trunk and upper-limbs (kinetic chain) with the assistance of lower-

limb joint kinematics and moments. This is evidenced by the sequential timings of peak 

GRF for the rear-hand cross, whereby the rear leg (57%) generated peak forces prior 

to the lead leg (74%). Moreover, ankle (65%), knee (70%) and hip (72%) joint angular 

extension velocities of the rear leg peaked prior to those of the lead leg (ankle - 77%, 

knee - 81% and hip - 88%), respectively. 

Meanwhile, for the lead hook and lead uppercut, GRF for the lead and rear legs 

peak in close proximity to one another, suggesting that both legs assist in the 

generation of force at similar time-points during the execution of these punches (as 
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evidenced in the large lead and rear leg vertical impulses for these punch types). 

However, more specifically, lead hip extensor moments appear to influence the 

execution of the lead hook, with this punch type exhibiting the greatest peak value 

across all punch types. This finding, alongside the lead knee and ankle extensor 

moments, seems to imply the lead leg is the principal contributor to the generation of 

momentum and energy for lead hook, which likely occurs as a result of the lower-limb 

kinetic chain sequence. Indeed, this is supported by the timings of peak lower-limb 

joint extensor moments for the lead leg, whereby the ankle (76.2%) exhibited its peak 

moment prior to the knee (94.4%) and hip (98.2%), respectively. Interestingly, while 

the rear leg seems to assist in stabilising the body during the lead hook that fosters 

the sequential transfer of momentum from the feet to the punching fist, this is not the 

case for the lead uppercut. Indeed, the lead uppercut demonstrated larger peak rear 

hip, knee and ankle joint extensor moments than the lead hook, which also followed a 

kinetic chain joint sequence (ankle – 57.7%, knee – 73.4%, and hip – 75.6%). This 

potentially suggests the rear leg plays a larger role in the generation of force and 

momentum for the lead uppercut compared to the lead hook. 

This information is useful for coaches and boxers as it may be used to develop 

relevant RT strategies that enhance the function of each leg during different punch 

types. For example, to enhance the performance of rear-hand punches, RT 

exercises/strategies that augment the lead leg’s ability to absorb force and resist 

excessive knee flexion (e.g. bilateral and unilateral drop/depth jump landings, single 

leg bounds) and the rear leg’s ability to forcefully extend the hip, knee and ankle joints 

(e.g. loaded jumps, heavy sled pushes), in addition to rear hip rotation (e.g. single arm 

landmine push presses) are recommended. 
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With regards to impulse, the lead hook generated the largest vertical impulse 

and the rear hook the largest net propulsive impulse for the rear leg, respectively. This 

appears to suggest that these two punches produced the highest forces over the 

duration of each punch from INITIATION to CONTACT. Previous research has 

reported the importance of impulse to explosive dynamic movements (Davies, Orr, 

Halaki, & Hackett, 2016; Suchomel & Sole, 2017), and, more specifically, that 

enhancing the braking (antero-posterior and vertical) impulse of the lead leg may 

increase the force of a punch owing to an increase in velocity, and subsequently 

momentum (mass x velocity) (Turner et al., 2011). Indeed, it is suggested that the 

greater the vertical and net propulsive impulse produced by the rear leg, the greater 

the overall momentum and peak fist velocities generated. This notion is somewhat 

supported by the significant rear leg propulsive impulse, rear hip, knee and ankle joint 

extension angles, extension velocities and extensor moments, and high peak fist 

velocity reported for the rear uppercut. Consequently, it seems reasonable to suggest 

that the more GRF a boxer can produce from the initiation of a punch to the point of 

impact with the target, the larger the degree of energy generated by the kinetic chain. 

In turn, this yields greater resultant joint angular velocities generated by the upper-

limbs (shoulder and elbow) and linear velocity of the fist towards the target. . Boxers 

could develop such increases in rear leg force (GRF, impulse and joint moments) 

through regular technical practice with a focus on rear leg propulsion via rear hip, knee 

and ankle joint extension and rotation (Chapter 3). In addition, lower-body resistance 

exercises that emphasise force-time characteristics across sagittal (e.g. back squats, 

broad jumps), frontal (e.g. lateral lunges, sideways sled drags) and transverse (e.g. 

med-ball shot putt, overhead med-ball throw) planes may enhance the extension 

angles, angular extension velocities and extensor moments of the rear leg joints 
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(Chapter 3) that could augment linear, angular and rotational force generation 

(Lenetsky et al., 2013; Suchomel et al., 2016; 2018). Future research should 

investigate the role of impulse to maximal punching, its relationship to GRF during 

maximal punching, and assess whether enhancing this kinetic variable can improve 

the characteristics of maximal punching performance. 

 

3.4.3. Relationships between kinematic and kinetic variables 

As expected, lead hook peak resultant fist velocity exhibited a significant 

(moderate) relationship with peak lead leg resultant GRF, signifying the influence of 

the vertical GRF produced by the lead leg. Furthermore, the notable lead leg joint 

extension angles, angular extension velocities and extensor moments, sequence of 

peak joint moments, and apparent contribution of ankle, knee and hip joint 

musculature to the generation of kinetic energy and momentum during the lead hook 

offers additional information that reinforces the importance of the lower-limbs in the 

generation of high fist velocities. Indeed, the sequential peaks in ankle, knee and hip 

joint angular extension velocities and moments (in addition to the shoulder and elbow 

joint angular velocity peaks) appear to highlight the influence of the kinetic chain to 

this punch type. On this evidence, it is proposed that as part of boxing training/ 

traditional skill-based practice, boxers aiming to increase the velocity of the fist and 

the damage-causing capabilities of this punch attempt to focus deliberately on 

generating force through the lead leg, in addition to rapid rotations and extensions of 

the lead ankle, knee and hip joints, during the initiation and delivery of the lead hook. 

Also, as previous research has highlighted the importance of lower-body strength to 

maximal punching (Del Vecchio et al., 2017; 2019; Loturco et al., 2014, 2016; Pilewska 
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et al., 2017; Zekas, 2016), coaches and boxers should consider the implementation of 

axial-loaded lower-body resistance exercises (e.g. squats, deadlifts, cleans, lunges) 

(Lenetsky et al., 2013; Turner et al., 2011) to enhance the peak vertical and resultant 

GRF potential of the lead leg, in addition to lead hip, knee and ankle extensor joint 

moments. 

Peak shoulder joint angular velocity also exhibited a moderate relationship with 

peak lead hook fist velocity, confirming the findings of Piorkowski (2009). It has been 

suggested that rear-hand crosses (Karpilowski, Nosarzewski, Staniak, & Trzaskoma, 

2001), lead and rear hooks (Piorkowski et al., 2011; Whiting et al., 1988), and lead 

and rear uppercuts (Cabral et al., 2010) produce a stretch-reflex (via the SSC) at the 

shoulder joint which potentiates the ensuing concentric muscular contraction, and 

subsequently, fist velocity. Therefore, it would appear that RT exercises that improve 

a boxer’s ability to rapidly abduct and adduct the punching arm may enhance the end-

point velocity of the fist, and subsequently, its damage-causing potential. Furthermore, 

as the upper-body kinematics of punching comprise a multitude of joint motions, 

including shoulder adduction, abduction, flexion and extension (Cabral et al., 2010; 

Piorkowski et al., 2011), a boxer’s training regimen should aim to incorporate ballistic 

resistance exercises that enhance speed and velocity characteristics of the 

musculature (deltoid, pectoralis major and minor, latissimus dorsi, and serratus 

anterior) that facilitate such motions, alongside regular technical practice (Piorkowski 

et al., 2011; Turner et al., 2011; Veegera & Van Der Helma, 2007). 

The significant association between peak elbow angular velocity and lead hook 

peak resultant fist velocity has not been documented in previous research, and it is 

suggested that, in a similar manner to the shoulder joint, the elbow joint exhibits a 

stretch-reflex following INITIATION that facilitates the generation of large peak fist 
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velocities. Indeed, at the onset of INITIATION, the elbow may extend slightly from its 

flexed ~90° angle as the shoulder abducts before rapidly adducting as the fist is 

projected towards the target. Although further research is required to establish if kinetic 

and kinematic variables associated with maximal punching performance are optimised 

if the elbow joint is extended and flexed rapidly or fixed at a ~90° angle, enhancing the 

eccentric strength and SSC efficiency of the musculature surrounding the elbow joint 

would appear to increase stability and force production potential of the lead hook 

(Cormie et al., 2011a; Zatsiorsky & Kraemer, 2006). 

Given the findings of Piorkowski et al. (2011) it was unsurprising to observe the 

link between peak jab resultant fist velocity and elbow joint angular. This likely occurs 

as a consequence of the jab often being less reliant upon SSC characteristics at the 

shoulder joint and trunk in order to minimise its delivery time, and therefore enhance 

its likelihood of striking the opponent before they can defend/evade (Haislet, 1968; 

Hickey, 2006). It would appear that enhancing a boxer’s ability to extend the punching 

arm as rapidly and forcibly as possible (elbow extension) may increase peak jab fist 

velocity, and consequently, could improve competitive performance considering the 

jab to the head of an opponent is the most frequently executed punch within 

competitive bouts (Davis et al., 2015; Davis et al., 2018; Thomson & Lamb, 2016). 

Moreover, increasing the rate of force development (RFD) of the elbow extensors (via 

elastic RT) has been shown to improve peak jab velocity as much as 11% (P < 0.01) 

in competitive boxers, (Markovic et al., 2016). Therefore, it is recommended that 

boxers include resistance exercises in their training programme that increase the 

strength of the tricep brachii musculature (primary muscle group responsible for elbow 

extension) to improve elbow joint velocity, and subsequently, peak jab fist velocity. 
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3.4.4. Conclusion 

In appraising the kinetic and kinematic characteristics of six traditional punch 

techniques implemented within amateur boxing, the present study has revealed that: 

(i) the lead hook produced the greatest peak resultant fist velocity values; (ii) the jab 

recorded the shortest delivery time; (iii) peak lead and rear leg resultant GRF were 

comparable across all punch types except for the jab, with force primarily applied in a 

vertical direction; (iv) the lead hook generated the largest peak extension angles and 

angular extension velocities for the lead ankle, knee and hip joints; (v) the jab produced 

the largest peak rear ankle and knee joint extension angles and angular extension 

velocities; (vi) peak lead ankle and hip joint moments were greatest for the lead hook; 

(vii) peak rear ankle and knee joint moments were largest for the jab; and (viii) punch-

specific inter-relationships exist between peak fist and joint angular velocities, and 

peak fist velocities and GRF. Whilst these findings advance our biomechanical 

understanding of maximal punching, there is now scope to investigate the consistency 

(MV) of these variables, and the links between boxer's physical qualities and the key 

kinetic and kinematic variables, leading potentially to the development of punch-

specific strength and conditioning strategies. 

 

Chapter 4 

Movement variability of maximal effort punches among amateur 

boxers 
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Abstract 

The purpose of this study was to quantify the within-subject (intra) and between-

subject (inter) variability of maximal effort punch (jab, rear-hand cross, lead and rear 

hook, lead and rear uppercut) kinetics and kinematics among amateur boxers. This 

study also sought to appraise the impact of boxing experience on the within-subject 

variability of maximal punch biomechanics. Fifteen male boxers (age: 24.9 ± 4.2 years, 

stature: 178 ± 8.0 cm; body mass: 75.3 ± 13.4 kg; years of experience: 6.3 ± 2.8 years) 

performed maximal effort punches against a suspended punch bag during which 
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upper-body kinematics were assessed using a 3D motion capture system and lower-

body (lead and rear legs) kinetics were recorded via two force plates. Within-subject 

variability was moderate-to-high for all kinetic and kinematic variables across all punch 

types (≥ 5%), with analysis revealing significant (P < 0.05, d = 0.2-1.9) differences for 

delivery time, peak fist velocity, timing of elbow joint angular velocity, and peak lead 

leg GRF. Between-subject variability was high (> 10%) across all punch types and 

biomechanical variables, particularly for peak angular elbow joint velocity for the rear-

hand cross (47.9%) and all lead and rear leg impulse variables (47.2-129.2%), 

respectively. Meanwhile, SWC% was lowest for the timing of peak elbow joint angular 

velocity (SWC% = 0.2%) during the rear-hand cross, and highest for jab lead leg 

vertical impulse (SWC% = 20.9%). No significant relationships (P > 0.05) were 

observed between years of experience and any biomechanical variable across punch 

types. While these findings advance our understanding of the movement variance of 

maximal punches and its association with boxing experience, future research 

pertaining to the influence of boxers’ physical qualities on punch kinetics and 

kinematics is justified. 

 

Key words: combat sports, boxing, punching, variation, experience 

 

 

 

 

With the role of certain kinetic and kinematic variables to maximal punches having 

been quantified alongside their differences between punch types (Chapter 3), research 

is merited to establish the movement variability (MV) associated with these measures. 

Indeed, with the importance of biomechanical variables to maximal punches having 

been highlighted, this study will appraise the MV of key kinetic and kinematic qualities 

of maximal punches, across different punch types. 
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4.1. Introduction 

Movement variability (MV) concerns the influence of intra- (trial-to-trial) and inter- 

(individual/human) movement variations on technique (Preatoni et al., 2013). Until 

recently, MV was deemed undesirable system ‘noise/error’, evidence of dysfunctional 

movement patterns, and an aspect of sports performance that decreases as skill 

proficiency increases (Bartlett, 2007; Bartlett et al., 2007; Langdown et al., 2012). 

Consequently, it was assumed by biomechanists and coaches alike that sports 

techniques/movement patterns should be invariant in order to optimise the 

performance of a given task, whilst training should foster a singular, all-encompassing 

technical model (Bartlett, 2007; Newell & Corcos, 1993). However, research into MV 

has reported how skilled-athletes may in fact utilise movement variance as a way of 

optimising athletic performance (Bartlett, 2007; Wagner et al., 2012).  

Indeed, the execution of dynamic full-body skills and actions across various 

sports, including handball (Wagner et al., 2012), basketball (Button et al., 2003; 

Robins, Davids et al., 2008; Schmidt, 2012), volleyball (Handford, 2006), triple jump 

(Scott et al., 1997) and javelin (Morriss et al., 1997) have highlighted the crucial role 

of MV to successful performance outcomes. MV appears important to achieving 

performance outcomes owing to the inter-subject characteristics of performers, 

whereby different athletes often execute the same movements with varying techniques 

whilst still achieving the same outcomes (Bartlett et al., 2007). Therefore, performers 

should avoid imitating the technique and/or training practices of other successful 

athletes as this may not be the optimised movement pattern given the characteristics 

of their individual structural (anthropometric), functional (physiological and 
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psychological), and task (pre-determined requirements of a competition or skill 

performance) constraints (McGarry et al., 2013). It has also been suggested MV is 

critical to allow performers to modify the coordination of their actions and facilitate 

effective adaptation to environmental and/or competitive changes (Handford et al., 

1997; Orth et al., 2018), though the existence of a trade-off between functional and 

detrimental MV in terms of optimal performance has yet to be established (Langdown 

et al., 2012).  

In acknowledging MV as a likely desirable feature of technique therefore 

(Bartlett et al., 2007), it is surprising that its role in sports performance and maximal 

boxing punching in particular, has received limited attention to date. Given the 

unpredictability of opponents and the ballistic nature of maximal punching itself, MV 

could provide boxers with purposeful solutions to what is a complex environment. 

Indeed, when punching a target, boxers must concurrently judge the distance to the 

target, select the specific technique to utilise, and assess how forcefully to perform the 

punch whilst the opponent/target is still within ‘punching range’ (Choi & Mark, 2004; 

Hristovski et al., 2006). Particular characteristics of boxing add to these sources of 

punch MV (Davids et al., 2006), such as the boxer’s arm segment dimensions (limb 

lengths), pre-fight strategy, fighting ‘style’, and perceived efficiency (perception of own 

performance capability). Accordingly, it has been suggested that compensatory and 

varying kinematics during the execution of a skill is actually symptomatic of skilled 

performance as performers intentionally modify their movements in order to adapt to 

environmental and/or competitive situations (Bartlett, 2007; Button et al., 2003; 

Hanford, 2006; Wagner et al., 2012).  

Conflicting evidence has demonstrated unintended MV is more prevalent in 

novice performers, and in their case detrimental to the performance outcome of the 
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movement skills/techniques, including baseball pitching (Fleisig, Chu, Weber, & 

Andrews, 2009), golf swing (Bradshaw et al., 2007), and punching (Lenetsky et al., 

2017). While Lenetsky et al. (2017) identified small-to-moderate variability for punch 

impact kinetics, the extent of MV and its influence on the upper-body kinematics and 

lower-body kinetics of maximal punching are currently unknown. Research has yet to 

elucidate whether different punch types exhibit more MV than others, and why this 

might occur. Given Chapter 3 (Study 1) revealed substantial biomechanical 

differences between punch types, it follows MV might be equally diverse. Generating 

such data would facilitate an understanding of the biomechanical qualities 

underpinning maximal punching, and consequently inform punch-specific practices for 

the benefit of competition. Moreover, recognising the degree of MV associated with 

different punch types will be valuable for identifying the occurrence of meaningful 

changes in maximal punching characteristics following technique- or strength-related 

interventions. That is, since boxers continually train kinematic and kinetic features of 

punching (Bingul et al., 2017), the ability to monitor technique accurately and 

determine genuine adjustments owing to interventions, rather than temporal 

fluctuations in technique, would provide useful information to document a boxer’s 

progression (Hopkins, Hawley, & Burke, 1999; Hopkins, 2004; Preatoni et al., 2013). 

To this end, quantifying the responsiveness (c.f. smallest worthwhile change) of a test 

allows practitioners to determine the minimum change in any given aspect of 

performance that must be realised before determining a genuine improvement, or 

deterioration, has taken place (Impellizzeri & Marcora, 2009). Such analysis 

addresses the practicality of a measure, which can take precedence over statistical 

significance (Buchheit, 2016). Therefore, the primary aim of this study was to quantify 

the within-subject (intra) and between-subject (inter) variability of maximal effort punch 
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kinetics and kinematics among amateur boxers. Additionally, the study sought to 

assess the impact of boxing experience on the within-subject variability of each 

biomechanical variable. 

 

4.2. Methods 

4.2.1. Participants 

Fifteen males (age: 24.9 ± 4.2 years; stature: 177.9 ± 8.0 cm; body mass: 75.3 ± 13.4 

kg; experience: 6.3 ± 2.8 years) across seven weight categories (flyweight (49-52 kg) 

to super-heavyweight (91+ kg)) were recruited from six amateur boxing clubs located 

across the North West of England, based upon current boxing experience (≥ 2 years) 

and official bout history (≥ 2 bouts). As all data within the current study was obtained 

through the research presented in Study 1 (Chapter 3), all participants completed a 

health screening questionnaire (PAR-Q) and supplied written informed consent, while 

Institutional ethical approval was granted by the Faculty of Medicine, Dentistry and 

Life Sciences Research Ethics Committee. 

 

4.2.2. Design 

The study adopted a cross-sectional, repeated measures design to assess the within-

subject and between-subject variability of kinematic variables, GRF and impulse of the 

primary punch techniques observed in boxing competition (Thomson & Lamb, 2016). 

The dependent variables were punch delivery time, peak resultant fist velocity, peak 

shoulder joint resultant angular velocity, peak elbow joint resultant angular velocity 

and timings of peak shoulder and elbow joint resultant angular velocities (kinematic -  
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sampled at 300 Hz), and peak lead and rear leg resultant GRF, lead leg net braking 

and vertical and rear leg net propulsive and vertical impulse (kinetic - sampled at 900 

Hz) characteristics measured via a 3D motion capture system (Oqus 7+ system, 

Qualisys Inc., Gothenburg, Sweden) and two embedded force platforms (model 

9281CA with 600 x 400 mm internal amplifiers, Kistler Instruments, Hampshire, UK), 

respectively (see Chapter 3 for a detailed description). The independent variables 

were punch type (jab, rear-hand cross, lead hook, rear hook, lead uppercut, and rear 

uppercut) and years of boxing experience. 

 

4.2.3. Procedures 

All participants performed punches against a water-filled punch bag (9-inch diameter 

- Aqua Bag ‘Headhunter’ model, Aqua Training Bag, New York, United States; see 

Chapter 3) while wearing reflective markers placed at specific anatomical landmarks 

to assess the full-body kinematics in 3D spaces across six degrees of freedom. 

Kinematic and kinetic data was quantified via Qualisys Track Manager (QTM) (Version 

2.14, Qualisys Inc., Gothenburg, Sweden) and subsequently analysed using Visual 

3D (Version 6, C-Motion Inc., Rockville, United States). Five trials were performed for 

each punch type based upon recommendations in previous research (Bartlett, 2007; 

Bates, Dufek & Davis, 1992; James, Herman, Dufek & Bates, 2007) (see Chapter 3 

for a more detailed description of the punch assessment procedure). 

 

4.2.4. (Relative) Sequential analysis 
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Relative sequential analyses were completed to highlight potential differences 

between trials and to verify the percentage of performance trials needed to achieve 

‘mean stability’ (i.e. how many trials were needed for the mean value of each 

dependent variable to become consistent), with 0.25 standard deviation bandwidths 

used in accordance with previous literature to ensure a stringent moving average 

across trials (Gore, Marshall, Franklyn-Miller, Falvey, & Moran, 2016; Taylor, Lee, 

Landeo, O’Meara, & Millett, 2015). This method of analysis was implemented to 

establish if the number of trials per punch type in the current study was enough to 

obtain a ‘stable’ mean for the kinetic and kinematic variables examined. The relative 

sequential analysis score is quantified by dividing the number of trials to stability by 

the total number of trials of the condition from which it was taken (e.g. five rear-hand 

cross trials). This score can then assist in highlighting differences between conditions 

with regards to the percentage of maximum possible trials taken to achieve mean 

stability (Taylor et al., 2015). Analyses revealed across all kinetic and kinematic 

variables, mean stability was achieved between 40-60% of the five trials utilised per 

variable (i.e. 2-3 trials were determined ‘enough’ to achieve a stable mean). This 

illustrates that when assessing maximal punches, 2-3 trials appear adequate to obtain 

‘stable’ kinetic and kinematic data using a 3D motion capture system and integrated 

force platforms. Examples from a randomly selected boxer can be observed in Figure 

4.1. To ensure the sequential analyses was independent of the eventual trial number 

(i.e. five), further analyses were conducted with a single boxer whereby 30 trials were 

completed (with ample rest of 60 seconds between efforts). Such analyses reinforced 

that five trials were indeed suitable to scrutinise the biomechanics of maximal effort 

punching (Figure 4.2). Although the overall CV% of selected kinetic and kinematic 

variables exhibited ‘high’ variability (≥ 10%; Queen et al., 2006; Roberts & Priest, 
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2006) across the 30 trials (peak fist velocity - 13.5%, delivery time - 18.9%, peak 

shoulder joint angular velocity - 13.3%, and peak rear leg GRF - 10.4%), previous 

literature reported comparatively low variation in the number of recommended trials 

between subjects (Taylor et al., 2015). That is, during a biomechanical analyses of a 

ballistic action (throwing), the number of trials recommended via sequential analysis 

fluctuated by only ≈10% between subjects (Taylor et al., 2015). Of course, this 

suggests the five trials used might not have been suitable for all boxers though this 

alternatively suggests five trials was perhaps more than is necessary for other boxers. 

Clearly, corroborating the sequential analyses with several additional boxers would 

have been preferential, but in the absence of clear guidelines and with it being 

supplementary to the chapter, it was deemed appropriate to rely upon a single case 

to provide some indication that the number of trials completed for data collection was 

adequate. 

 

4.2.5. Statistical analysis 

The within-subject coefficient of variation (CV) was quantified to assess the variability 

of dependent variables between trials (Thomson & Lamb, 2016), by calculating the 

mean CV from individual subject CVs [(𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑚𝑒𝑎𝑛⁄ ) ∗ 100] across 

each dependent variable (Hopkins, 2000). Between-subject variation was quantified 

to assess the variability of dependent variables between participants. This was 

calculated by dividing the standard deviation of group scores by the overall mean 

(Paton, & Hopkins, 2006). In accordance with previous literature, variability was 

categorised as ‘low’ (<5%), ‘moderate’ (5-9.9%) or ‘high’ (≥ 10%; Queen et al., 2006; 

Roberts et al., 2006; Thomson, 2015). The standard error of mean values (SEM% = 



   

176 
 

(SD / √ number of trials / mean) x 100) were quantified for the kinematic and kinetic 

measures of each boxer to assess the consistency of mean values across punch trials. 

The difference between within-subject CV and the standard error of the mean (SEM%) 

was used to quantify each boxer’s biological variability (Biological coefficient of 

variation: BCV% = within-subject CV% - SEM%) (Bradshaw et al., 2007). A one-way 

repeated measures analysis of variance (ANOVA) was used to compare the CV% of 

biomechanical variables across punch types, with Bonferroni corrected post-hoc tests 

applied as necessary (significance accepted as P ≤ 0.003). Pair-wise comparisons 

were quantified through Cohen’s effect sizes, calculated as: d = (�̅�1- 𝑥 ̅2) / SD; where 

�̅�1 and �̅�2 represent the two sample means and SD the pooled standard deviation. 

The magnitude of Cohen’s d effect sizes were classified as: trivial < 0.2, small 0.2-0.6, 

moderate 0.6-1.2, large 1.2-2.0, and very large > 2.0 (Hopkins, 2004). Additionally, 

Pearson product-moment coefficients with 95% confidence intervals were used to 

quantify the relationships between years of boxing experience and within-subject CV 

of kinematic and kinetic variables, with thresholds interpreted as: < 0.1 (trivial); 0.1-0.3 

(small); 0.3-0.5 (moderate); 0.5-0.7 (large); 0.7-0.9 (very large) and > 0.9 (nearly 

perfect) (Hopkins, 2002). The smallest worthwhile change (SWC%) was also 

quantified to ascertain the minimum change required to identify ‘genuine’ differences 

in performance (Currell & Jeukendreup, 1998) using Cohen’s (1988) standardised d 

(0.2 x pooled standard deviation of sample means); ‘moderate’ worthwhile change 

(MWC%) and ‘large’ worthwhile change (LWC%) were also calculated using three 

(0.6) and six (1.2) times the SWC% (Batterham & Hopkins, 2006; Hopkins, 2004; 

Waldron, Highton, & Twist, 2013). All statistics were completed using SPSS (version 

23, Chicago, USA). 
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Figure 4.1. Example of sequential analysis of peak fist velocity of a randomly selected boxer. 
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Figure 4.2. Example of sequential analysis of selected kinetic and kinematic variables in a 
30-trial condition of a single boxer during rear-hand cross punches.  
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4.3. Results 

4.3.1. Within-subject and biological variability 

Within-subject variability was low-to-high (1.1-29.5%) (Table 4.1) across the six 

kinematic variables, though was only significantly different between punch types for 

delivery time (P < 0.001) and peak fist velocity (P = 0.011). The timing of peak elbow 

joint angular velocity differed between punches (P < 0.001), with biological variability 

ranging from 0.6 (rear-hand cross) to 5.7% (rear hook), after the standard error of 

means (SEM%) of approximately 2.6% (0.5-4.6%) were accounted for. For example, 

for delivery time, post-hoc analysis confirmed that rear-hand cross variability was 

significantly different to the lead hook (P = 0.001, d = 1.2), but not any other punch 

type (P > 0.003, d = 0.3-1.1). 

For the six kinetic variables, only peak lead leg GRF CV% exhibited a significant 

difference between punch types (P < 0.001), likely owing to the jab’s markedly greater 

variability compared to other punch types (especially the rear hook and lead uppercut) 

(Table 4.2). Indeed, the jab’s biological variation (13.8%) was almost twice that of the 

rear-hand cross (7.6%) and three times that of the lead uppercut (5.1%). This was also 

mirrored in the within-subject and biological variation for lead leg vertical impulse, with 

the highest variability (jab) over twice that of the lowest (rear uppercut) (Table 4.2). 

For punch type comparisons, post-hoc analysis revealed that peak lead leg GRF 

variability for the jab was significantly greater than all other punch types (P < 0.006, d 

= 1.2-1.3), except for the rear-hand cross (P = 0.11, d = 1.1). 

 

4.3.2. Between-subject variability and smallest worthwhile change (SWC%) 
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Between-subject variability was high (1.4-47.9%) across all punch types and all 

kinematic variables, with the jab exhibiting the greatest variation and SWC% for 

delivery time, the lead uppercut for peak fist velocity, and rear-hand cross for peak 

angular joint velocities (shoulder and elbow), respectively (see Tables 4.3 and 4.4). 

Meanwhile, the rear-hand cross exhibited the least variation for the timing of peak 

elbow joint angular velocity (SWC% = 0.1%), while the lead uppercut exhibited 

marginally higher SWC% for the shoulder joint (SWC% = 0.2%). 

Between-subject variability was also high across each kinetic variable for each 

punch type, with peak lead leg GRF variation being greatest in the jab (38%) and rear 

leg GRF in the rear uppercut (34.9%), respectively (see Table 4.3). The rear uppercut 

also exhibited the largest SWC% for lead leg braking (18.3%) and rear leg propulsive 

(18.2%) impulses, while the jab demonstrated the largest vertical impulse SWC% for 

both lead (20.9%) and rear (14.6%) legs. 

 

4.3.3. Relationship between years of boxing experience and within-subject variability 

of kinematic and kinetic variables. 

No significant relationships were observed between years of experience and any 

biomechanical variable across punch types (Table 4.5). The highest positive 

associations were observed for peak rear leg GRF of the rear-hand cross (r = 0.31, P 

> 0.05) and peak lead leg GRF of the lead hook (r = 0.30, P > 0.05). Moderate negative 

associations were found for rear uppercut peak fist velocity (r = -0.45, P > 0.05) and 

lead uppercut peak elbow joint angular velocity (r = -0.45, P > 0.05). 
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Table 4.1. Within-subject and biological variability of kinematic variables across punch techniques. 

 
Within-subject coefficient of variation (mean CV%)  Biological coefficient of variation (BCV%) 

 Jab RHC 
Lead 
hook 

Rear 
hook 

Lead 
uppercut 

Rear 
uppercut 

 Jab RHC 
Lead 
hook 

Rear 
hook 

Lead 
uppercut 

Rear 
uppercut 

Punch delivery 
time (ms) 

18.8 ± 9 
21.8 ± 
8.1LH 

12.2 ± 
4.1C 17.3 ± 5.1 11.3 ± 5.2 13.4 ± 4.8  10.4 ± 5 

12.0 ± 
4.5LH 

6.7 ± 2.3C 9.5 ± 2.9 6.3 ± 2.8 7.4 ± 2.6 

Peak fist velocity 
(m/s) 

14.3 ± 5.2 7.4 ± 2.1 8.7 ± 2 8.7 ± 2.6 19.8 ± 18.4 14.3 ± 9.4  7.9 ± 2.9 4.1 ± 1.2 4.8 ± 1.1 4.8 ± 1.4 9.8 ± 10.4 7.9 ± 5.2 

Peak shoulder 
joint angular 
velocity (deg/s) 

20.6 ± 
13.1 

29.3 ± 
28.4  

21.6 ± 
13.8 

21.2 ± 9.4 12.8 ± 6.5 14.4 ± 6.5  
11.4 ± 

7.2 
16.2 ± 
15.7 

11.9 ± 
7.6 

11.7 ± 
5.2 

7.1 ± 3.6 8.0 ± 3.6 

Peak elbow joint 
angular velocity 
(deg/s) 

25.9 ± 
21.8 

26.7 ± 
13.8 

21.7 ± 7.9 25.5 ± 9 19.0 ± 5.3 29.5 ± 23.7  
14.3 ± 
12.1 

14.8 ± 
7.6 

12.0 ± 
4.4 

14.1 ± 5 10.5 ± 2.9 16.3 ± 13.1 

Timing of peak 
shoulder joint 
angular velocity 
(% of punch) 

9.1 ± 7.7 6.4 ± 5.1 10.9 ± 9.2 4.7 ± 5.2 1.7 ± 2.8 5.3 ± 7.6  5.0 ± 4.2 3.6 ± 2.8 6.0 ± 5.1 2.6 ± 2.9 0.9 ± 1.6 2.9 ± 4.2 

Timing of peak 
elbow joint 
angular velocity 
(% of punch) 

1.8 ± 1.3 1.1 ± 0.6 6.8 ± 4.9 10.3 ± 7.4 6.6 ± 5.7 8.5 ± 8.1  1.0 ± 0.7 0.6 ± 0.4 3.8 ± 2.7 5.7 ± 4.1 3.6 ± 3.2 4.7 ± 4.5 

 
Values presented as mean ± SD, RHC = rear-hand cross. 
 
C significantly different to the cross (P < 0.003). 
LH significantly different to the lead hook (P < 0.003). 
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Table 4.2. Within-subject and biological variability of kinetic variables across punch techniques. 

 
Within-subject coefficient of variation (mean CV%)  Biological coefficient of variation (BCV%) 

 Jab RHC 
Lead 
hook 

Rear 
hook 

Lead 
uppercut 

Rear 
uppercut 

 Jab RHC 
Lead 
hook 

Rear 
hook 

Lead 
uppercut 

Rear 
uppercut 

Peak lead leg 
GRF (N/kg) 

24.9 ± 
11.7LH,RH.LU 

13.7 ± 
5.2 

11.8 ± 
4.7J 9.9 ± 3.3J 9.3 ± 3.7J 10.1 ± 6.0  

13.8 ± 
6.4LH,RH.LU 

7.6 ± 2.9 6.5 ± 2.6J 5.5 ± 1.8J 5.1 ± 2J 5.6 ± 3.3 

Peak rear leg 
GRF (N/kg) 

12.6 ± 6.6 
10.3 ± 

4.9 
17.1 ± 
10.9 

10.2 ± 
5.3 

11.9 ± 
8.4 

12.2 ± 4.5  7.0 ± 3.6 5.7 ± 2.7 9.5 ± 6 5.6 ± 2.9 6.6 ± 4.6 6.7 ± 2.5 

Total lead leg net 
braking impulse 
(N/s/kg) 

-81.9 ± 
40.4 

-34.8 ± 
13.9 

-60.1 ± 
25.9 

-26.1 ± 
8.3 

-36.0 ± 
24.1 

-22.6 ± 
9.8 

 
-43.9 ± 

21.9 
-19.2 ± 

7.7 
-29.9 ± 

18.3 
-14.4 ± 

4.6 
-19.9 ± 

13.3 
-12.5 ± 

5.4 

Total lead leg 
vertical impulse 
(N/s/kg) 

52.2 ± 
28.2 

37.6 ± 15 
27.2 ± 
10.9 

28.5 ± 
9.3 

24.9 ± 
13.5 

22.8 ± 6.6  
28.8 ± 
15.6 

20.8 ± 
8.3 

15.0 ± 6 
15.8 ± 

5.1 
13.8 ± 

7.4 
12.6 ± 

3.7 

Total rear leg net 
propulsive 
impulse (N/s/kg) 

47.3 ± 
23.7 

47.0 ± 
15.5 

47.9 ± 
27.1 

34.6 ± 
10.5 

33.2 ± 
19.5 

29.9 ± 
15.2 

 
26.1 ± 
13.1 

26.0 ± 
8.6 

26.5 ± 15 
19.1 ± 

5.8 
18.4 ± 
10.8 

16.6 ± 
8.4 

Total rear leg 
vertical impulse 
(N/s/kg) 

39.0 ± 
21.9 

49.4 ± 
15.4 

29.9 ± 16 
38.1 ± 
11.6 

25.6 ± 
13.4 

28.6 ± 
13.9 

 
21.6 ± 
12.1 

27.3 ± 
8.5 

16.5 ± 
8.9 

21.1 ± 
6.4 

14.2 ± 
7.4 

15.8 ± 
7.7 

 
Values presented as mean ± SD., RHC = rear-hand cross. 
 
J significantly different to the jab (P < 0.003). 
LH significantly different to the lead hook (P < 0.003). 
RH significantly different to the rear hook (P < 0.003). 
LU significantly different to the lead uppercut (P < 0.003). 
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Table 4.3. Between-subject variation (CV%) of kinetic and kinematic variables across punch techniques. 

 Jab Rear-hand cross Lead hook Rear hook Lead uppercut Rear uppercut 

Punch delivery time (ms) 40.4 35.7 24.4 23.2 19.4 20.6 

Peak fist velocity (m/s) 16.2 12.6 14.6 17.6 42.5 17.2 

Peak shoulder angular velocity 
(deg/s) 

24.1 40.4 22.4 26.3 13.0 12.3 

Peak elbow angular velocity (deg/s) 37.0 47.9 36.2 47.9 27.9 34.8 

Timing of peak shoulder angular 
velocity (% of punch) 

11.9 11.5 15.5 6.6 3.3 8.5 

Timing of peak elbow angular 
velocity (% of punch) 

2.3 1.4 12.3 13.7 10.2 11.9 

Peak lead leg GRF (N/kg) 38.0 34.3 28.6 25.0 27.8 27.5 

Peak rear leg GRF (N/kg) 27.3 25.1 27.8 23.8 27.1 34.9 

Lead leg net braking impulse 
(N/s/kg) 

129.2 71.4 94.1 63.0 59.0 51.6 

Lead leg vertical impulse (N/s/kg) 116.1 71.6 52.8 61.9 47.2 48.7 

Rear leg net propulsive impulse 
(N/s/kg) 

90.1 78.1 87.4 68.4 61.5 60.4 

Rear leg vertical impulse (N/s/kg) 80.2 83.4 59.7 64.2 49.4 56.1 

Note: Data presented as CV% 
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Table 4.4. Worthwhile change statistics for kinetic and kinematic variables across punch techniques. 
 

 

Jab Rear-hand cross Lead hook Rear hook Lead uppercut Rear uppercut 

SWC 

% 

MWC

% 

LWC 

% 

SWC 

% 

MWC

% 

LWC 

% 

SWC 

% 

MWC

% 

LWC 

% 

SWC 

% 

MWC

% 

LWC 

% 

SWC 

% 

MWC

% 

LWC 

% 

SWC 

% 

MWC

% 

LWC 

% 

DT 7.4 22.2 44.4 6.0 18.1 36.2 4.4 13.3 26.5 3.3 9.8 19.6 3.3 9.9 19.7 3.3 10.0 19.9 

FV 2.9 8.7 17.4 2.5 7.4 14.9 3.1 9.2 18.4 3.3 10.0 19.9 4.3 13.0 26.0 3.0 9.0 17.9 

SJAV 3.9 11.8 23.5 7.8 23.3 46.6 3.4 10.1 20.3 4.8 14.4 28.8 2.3 6.9 13.7 2.0 5.9 11.7 

EJAV 7.0 21.1 42.2 8.6 25.8 51.6 6.9 20.8 41.6 8.1 24.4 48.8 5.2 15.7 31.3 5.2 15.6 31.1 

SJAV% 1.5 4.5 9.0 1.7 5.1 10.2 2.6 7.9 15.8 0.4 1.2 2.4 0.2 0.6 1.1 0.3 0.8 1.6 

EJAV% 0.3 1.0 1.9 0.1 0.4 0.7 2.6 7.8 15.5 2.5 7.5 15.1 1.4 4.2 8.4 1.8 5.3 10.6 

LLGRF 6.5 19.6 39.1 6.5 19.5 39.1 5.4 16.3 32.6 4.8 14.5 29.0 5.4 16.2 32.5 5.2 15.7 31.3 

RLGRF 5.0 15.0 30.0 4.6 13.9 27.9 4.8 14.5 28.9 4.5 13.6 27.2 5.0 15.0 30.1 6.8 20.4 40.8 

LLFyI 15.9 47.6 95.2 13.0 39.0 78.0 16.2 48.7 97.4 11.3 33.9 67.8 10.3 30.9 61.8 18.3 55.0 110.1 

LLFzI 20.9 62.8 125.6 12.8 38.4 76.7 9.3 28.0 56.0 10.4 31.1 62.3 8.1 24.4 48.8 9.1 27.4 54.7 

RLFyI 16.0 47.9 95.9 13.7 41.1 82.2 15.6 46.7 93.3 12.3 36.9 73.9 11.2 33.7 67.5 18.2 54.6 109.3 

RLFzI 14.6 43.7 87.5 14.3 43.0 86.0 10.9 32.8 65.6 11.1 33.2 66.5 9.0 27.1 54.3 10.0 29.9 59.7 

 
SWC% = small worthwhile change, MWC% = moderate worthwhile change, LWC% = large worthwhile change, DT = delivery time, FV = peak resultant fist velocity, SJAV = peak shoulder 
joint resultant angular velocity, EJAV = peak elbow joint resultant angular velocity, SJAV% = timing of peak shoulder joint resultant angular velocity, EJAV% = timing of peak elbow joint 
resultant angular velocity, LLGRF = peak lead leg resultant GRF, RLGRF = peak rear leg resultant GRF, LLFyI = lead leg net braking impulse, LLFzI = lead leg vertical impulse, RLFyI = rear 
leg net propulsive impulse, RLFzI = rear leg vertical impulse 
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Table 4.5. Pearson correlations (± 95% CI) between boxing experience (years) and within-subject variability of kinetic and 
kinematic variables. 
 

 Jab Rear-hand cross Lead hook Rear hook Lead uppercut Rear uppercut 

DT 
0.05 

(-0.54 to 0.64) 
-0.19 

(-0.78 to 0.39) 
-0.04 

(-0.64 to 0.55) 
0.11 

(-0.48 to 0.70) 
0.06 

(-0.53 to 0.65) 
-0.14 

(-0.74 to 0.44) 

FV 
-0.21 

(-0.79 to 0.37) 
-0.01 

(-0.61 to 0.58) 
-0.18 

(-0.77 to 0.40) 
-0.29 

(-0.86 to 0.28) 
-0.32 

(-0.89 to 0.24) 
-0.45 

(-0.99 to 0.07) 

SJAV 
0.27 

(-0.29 to 0.85) 
0.12 

(-0.47 to 0.71) 
-0.29 

(-0.86 to 0.27) 
0.10 

(-0.48 to 0.70) 
-0.10 

(-0.70 to 0.49) 
-0.39 

(-0.94 to 0.15) 

EJAV 
-0.07 

(-0.67 to 0.52) 
0.17 

(-0.41 to 0.76) 
0.14 

(-0.45 to 0.73) 
0.20 

(-0.38 to 0.79) 
-0.45 

(-0.99 to 0.07) 
0.15 

(-0.43 to 0.74) 

SJAV% 
-0.04 

(-0.64 to 0.55) 
-0.30 

(-0.87 to 0.26) 
-0.45 

(-0.98 to 0.08) 
-0.44 

(-0.98 to 0.08) 
-0.11 

(-0.71 to 0.47) 
-0.23 

(-0.82 to 0.34) 

EJAV% 
-0.34 

(-0.90 to 0.22) 
0.11 

(-0.48 to 0.71) 
-0.31 

(-0.88 to 0.25) 
-0.02 

(-0.62 to 0.57) 
-0.22 

(-0.80 to 0.36) 
0.11 

(-0.47 to 0.71) 

LLGRF 
-0.04 

(-0.64 to 0.55) 
0.24 

(-0.33 to 0.82) 
0.30 

(-0.27 to 0.87) 
-0.27 

(-0.84 to 0.30) 
-0.02 

(-0.62 to 0.57) 
0.05 

(-0.54 to 0.65) 

RLGRF 
0.10 

(-0.49 to 0.69) 
0.31 

(-0.25 to 0.88) 
0.02 

(-0.57 to 0.62) 
-0.22 

(-0.81 to 0.35) 
0.08 

(-0.51 to 0.67) 
-0.36 

(-0.92 to 0.18) 

LLFyI 
0.18 

(-0.40 - 0.77) 
0.11 

(-0.48 to 0.70) 
-0.14 

(-0.73 to 0.44) 
-0.35 

(-0.91 to 0.20) 
0.13 

(-0.45 to 0.73) 
-0.09 

(-0.69 to 0.50) 

LLFzI 
-0.13 

(-0.72 to 0.45) 
-0.25 

(-0.83 to 0.32) 
-0.03 

(-0.63 to 0.56) 
0.34 

(-0.21 to 0.91) 
-0.02 

(-0.62 to 0.57) 
0.14 

(-0.44 to 0.73) 

RLFyI 
0.003 

(-0.59 to 0.60) 
-0.14 

(-0.73 to 0.45) 
-0.26 

(-0.84 to 0.31) 
-0.06 

(-0.65 to 0.53) 
-0.10 

(-0.70 to 0.49) 
0.03 

(-0.55 to 0.63) 

RLFzI 
0.07 

(-0.52 to 0.67) 
-0.14 

(-0.74 to 0.44) 
-0.02 

(-0.62 to 0.57) 
-0.07 

(-0.67 to 0.52) 
-0.02 

(-0.61 to 0.57) 
0.06 

(-0.53 to 0.66) 

 
DT = delivery time, FV = peak resultant fist velocity, SJAV = peak shoulder joint resultant angular velocity, EJAV = peak elbow joint resultant angular velocity, SJAV% = timing of peak 
shoulder joint resultant angular velocity, EJAV% = timing of peak elbow joint resultant angular velocity, LLGRF = peak lead leg resultant GRF, RLGRF = peak rear leg resultant GRF, LLFyI = 
lead leg net braking impulse, LLFzI = lead leg vertical impulse, RLFyI = rear leg net propulsive impulse, RLFzI = rear leg vertical impulse 
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4.4. Discussion 

This study has revealed considerable within- and between-subject variability across 

the majority of the kinetic and kinematic variables measured for all punch types. 

Interestingly, such variability was independent of the amount of boxing experience 

(years). Though certain kinematic variables exhibited comparable degrees of variance 

(i.e. delivery time and peak fist velocity), high differences in MV across punch type for 

angular joint velocity and kinetic variables highlight MV as being characteristic of 

maximal punching, with boxers appearing to manipulate biomechanical variables via 

different coordination strategies in order to achieve a relatively consistent intensity and 

end-product. Coaches and boxers should therefore acknowledge the existence and 

magnitude of MV, be mindful of its influence on maximal punching, and recognise how 

different punches exhibit changeable degrees of kinetic and kinematic variance. 

 

4.4.1. Within-subject variation 

Compensatory joint actions and subsequent movement inconsistencies 

resulting from ballistic, complex actions may assist in explaining the moderate-to-large 

within-subject variation of the jab, rear-hand cross, and lead hook observed in the 

current study. It is likely that such compensatory movements (i.e. intentional 

differences in coordination at the shoulder and elbow joints) ensure peak fist velocity 

(and, perhaps, punch delivery time) is comparatively consistent. This notion that 

outcome consistency of motion does not necessarily require movement consistency 

(Bartlett et al., 2007), is supported by findings from other sports that suggest the 

occurrence of such adaptations in the execution of sport-specific skill is indicative of 

high-level performance (Bartlett, 2007; Hanford, 2006; Handford et al., 1997; Scott et 
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al., 1997; Wagner et al., 2012). In this way, MV is seen as a ‘functional’ way of 

interacting and adapting to changing sporting conditions (Langdown et al., 2012) and 

is symptomatic of an ability that allows performers to adapt to the ever-changing stimuli 

comprising dynamic sporting environments (Bartlett et al., 2007; Bradshaw et al., 

2009; Davids, Lees, & Burwitz, 2000; Williams, Davids, & Williams, 1999).  

Though all punches exhibited ‘high’ variability, it was notable the second most 

commonly performed punch within competition (after the jab), the rear-hand cross 

(Davis et al., 2013; 2015; 2018; Slimani et al., 2017; Thomson & Lamb, 2016), 

displayed the highest within-subject and biological variance. The large MV may relate 

to the rate at which this punch is delivered, with its shorter delivery times than hooks 

and uppercuts, respectively (Chapter 3; Piorkowski et al., 2011). Indeed, previous 

research has reported how rapid and accelerative phases of motion, particularly during 

complex movements performed at high-speed, increase the likelihood of MV occurring 

as performers compensate for the ballistic nature of the action at distal joints segments 

(Darling & Cooke, 1987; van den Tillaar & Ettema, 2006; Wagner et al., 2012). 

However, this degree of MV by the rear-hand cross was surprising given it is 

considered less complex than hooks and uppercuts (comprising elbow extension and 

shoulder protraction predominantly; Hickey, 2006; Piorkowski et al., 2011) and is likely 

to be rehearsed more than other punch types (Davis et al., 2015; Slimani et al., 2017; 

Thomson, & Lamb, 2016). 

Although the need for performers to demonstrate repeatable movement 

patterns is essential for optimising technique, possessing the ability to vary movement 

according to the competitive and environmental conditions of competition is also an 

important aspect of successful sports performance (Langdown et al., 2012). 

Furthermore, by intentionally minimising variability, and therefore constraining 
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movement, performance could be negatively affected in that they may struggle to 

adapt to the conditions of competition (Langdown et al., 2012). Consequently, the high 

MV observed for peak shoulder and elbow joint angular velocities, particularly for the 

rear-hand cross (shoulder) and rear uppercut (elbow), may not be detrimental to 

performance given the intricate movement patterns that comprise punching 

technique(s). Indeed, previous research among sprinters has reported average 

angular joint velocity within-subject variation of 45.6 ± 22.6% (hip), 25.8 ± 17.8% 

(knee), and 27.8 ± 13.4% (ankle) for the stride leg (Bradshaw et al., 2007), reflecting 

how ‘large’ variations for certain kinematic variables may be dependent on individual 

structural, functional, and task constraints (McGarry et al., 2013), and may not 

negatively affect performance. However, further research pertaining to the MV of 

maximal punching is required in order to gain a better understanding of how much joint 

movement (particularly at the shoulder and elbow) is associated with optimal punching 

performance. 

Further evidence supporting the existence (and possible desirability) of 

considerable MV even among the most prevalent (practiced) punches was seen for 

the peak lead leg GRF of the jab, which exceeded that of both the hooks and 

uppercuts. In principle, such a well-rehearsed punch ought to demonstrate the lowest 

MV across punch trials (Bartlett, 2007), but it seems not to be the case. Again, perhaps 

jab MV is directly influenced by boxing style and/or technique; offensive-minded 

boxers being more likely to use it as an attacking mechanism to cause damage and 

create openings for more forceful strikes (Haislet, 1968; Hickey, 2006), whereas 

defensive-minded and/or ‘counter-punching’ boxers prefer using it to keep an 

opponent at ‘long range’. As such, offensive-minded boxers may be accustomed to 

executing the jab at maximal intensity, while the defensive-minded boxers may not 
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due to their differing strategies/style. Therefore, whilst all the current boxers were 

instructed to perform all trials for each punch type at maximal intensity (‘to throw knock-

out punches whilst maintaining correct technique’), it is possible such differences were 

responsible for the variance in the lead leg GRF generated from the jab. 

In general, the within-subject variance for peak GRF was lower than that 

observed for peak shoulder and elbow joint angular velocities, respectively. Though it 

is not apparent why this difference occurred, previous research has determined certain 

characteristics of dynamic movement require stability in order to optimise 

performance, whilst others necessitate varying degrees of variability in order to 

achieve successful outcomes (Handford, 2006; Yang et al., 2018). That is, by allowing 

certain features of movement to vary, biomechanical characteristics may be enhanced 

facilitating efficient compensatory movement(s) (Bartlett et al., 2007; Handford, 2006; 

Langdown et al., 2012). Indeed, in other dynamic sporting movements sharing similar 

kinematics to punching, GRF produced by the lead and rear legs has been shown to 

provide a stable base from which to generate force that can be transmitted distally to 

the hand/fist segment, generating high upper-limb velocities (Bartonietz, 1994; 

MacWilliams, Choi, Perezous, Chao, & MacFarland, 1998; McCoy, Gregor, Whiting, 

& Rich, 1984; McNally, Borstad, Oñate, & Chaudhari, 2015). Therefore, it is plausible 

the rigidity and stability afforded by lead and rear leg GRF during a maximal punch 

may facilitate degrees of functional MV at the shoulder and elbow joints that foster the 

transmission of force from the lower limbs to the fist via the kinetic chain (Cheraghi et 

al., 2014). 

In contrast to peak GRF, lead and rear leg impulse (net braking/propulsive and 

vertical) exhibited the highest variability (within-subject, between-subject, and 

biological) of all variables. While such net braking impulse MV is markedly greater than 
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values reported in studies examining sprint acceleration in team sport athletes (23.1%; 

Kawamori, Nosaka, & Newton, 2013) and track and field and team-sport athletes 

combined (14%; Hunter, Marshall, & McNair, 2005), it is difficult to explain. This large 

variation (particularly compared to peak GRF) among boxers likely relates to the time 

element inherent in the calculation of impulse. Indeed, peak GRF is dependent on an 

athlete’s body mass and degree of force(s) exerted, and not time, whereas impulse is 

related to the total time taken to apply such forces (Moir, 2016). Therefore, the boxers 

may have produced comparatively consistent peak GRF across punch types, but 

applied these forces over varying time periods from punch initiation to the point of 

contact. In addition, another explanation may relate to lower-limb joint kinematics 

associated with maximal punches. In sprinting, lower-limb propulsive impulse was 

associated with high hip extension velocities (R2 = 0.57) accounting for 57% of 

variance in peak sprint velocity, with greater magnitudes of lower-limb propulsion 

deemed necessary to achieve high peak accelerations (Hunter et al., 2005). In relation 

to punching, the ballistic nature of complex dynamic motions performed at high 

velocities (such as maximal punches) increases the probability of athletes 

compensating for such rapid motions through the variation of timings and magnitudes 

of distal joint kinematics (e.g. ankle joint angles, angular extension velocities and 

extensor moments) and associated muscular contractions (Wagner et al., 2012). 

Indeed, it is suggested that the rapid weight transfer from the rear leg to the lead leg 

(Turner et al., 2011), in addition to the rotational characteristics of maximal punching 

(Cabral et al., 2010) challenges the stability of boxers (Yoon & Kim, 2019), and in 

particular, those of less ability (Leal & Spaniol, 2016). This may encourage excessive 

motions/movements that results in less repeatable punch performances. Thus, it 

seems plausible to suggest that lower-limb joint kinematics and moments, diverse 
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ranges of time spent applying force, and the dynamic nature of maximal punching may 

help to explain the large impulse variability in the current study.   

 

4.4.2. Between-subject variation 

All punch types exhibited large between-subject variation for punch delivery time and 

peak fist velocity, the largest for the jab (delivery time) and lead uppercut (peak fist 

velocity). This is consistent with the degree of within-subject variability referred to 

above for jab delivery time, and can be explained in the same manner (relating to 

fundamental technical, physical, and anthropometric differences between boxers; 

Guidetti et al., 2002; Khanna & Manna, 2006). However, the case for peak fist velocity 

of the lead uppercut is different. For example, the way in which boxers execute the 

frequently used jab within training/competition (e.g. as a ‘set up’ strike for more forceful 

punches, such as a rear-hand cross, or as a defensive punch to keep an opponent at 

a distance), plausibly magnifies between-boxer discrepancies. Moreover, the rapid 

and ballistic nature of the jab may also contribute to the degree of inter-boxer MV, with 

dynamic full-body movements performed at high-velocities often requiring distal joint 

segments to compensate for any superfluous movement variance in proximal 

segments (Darling & Cooke, 1987; van den Tillaar & Ettema, 2006; Wagner et al., 

2012). It is also likely that these distal joint segment compensations explain the high 

between-subject variability of peak fist velocity during the lead uppercut. Though as 

the lead uppercut is the least executed punch type within competition, regardless of 

ability level (Davis et al. 2017; Kapo et al., 2008; Thomson & Lamb, 2016), the large 

(relative) inter-subject peak fist velocity variability observed might reflect the levels of 
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technical expertise (‘ability’) of the boxers in the current study that could be 

independent of experience level.  

Large between-subject variation in shoulder and elbow joint angular velocities 

was observed for all punch types, but particularly for the rear-hand cross (both joints) 

and rear hook (elbow). Although not directly comparable, Lenetsky et al. (2017) 

reported ‘moderate’ variability for the impact kinetics of rear-hand cross (9.3%) and 

rear hook (7.7%). Arguably, in their study and the current one, the levels of MV 

reported for these two punches have been influenced by the varying degrees of GRF 

and impulse generated by the boxers at the initiation of these punch types, resulting 

from mechanisms responsible for the generation of such force (such as lower-limb 

joint extension angles, extension velocities and extensor moments – Chapter 3). That 

is, based on the role of GRF, impulse, joint moments and lower-limb joint kinematics 

to distal joint segment velocities during punching (Chapter 3; Cheraghi et al., 2014, 

Lenetsky et al., 2013; Turner et al., 2011) and other ballistic movements (MacWilliams 

et al., 1998; McNally et al., 2015; Williams, 2012), there is further evidence of the 

occurrence of compensatory patterns of movement. Such patterns may also explain 

why lead and rear leg impulse (net braking/propulsive and vertical) exhibited the 

highest amount of between-subject variation; technical, muscle activity and/or lower-

limb kinematic variability changes/adaptations between punch trials could have 

occurred to accommodate for large impulse and/or GRF values generated. To validate 

this theory, a future investigation to examine the link between lower-limb impulse, joint 

moments, and joint kinematics (e.g. extension angles and angular velocities) variability 

and electromyographic (EMG) analysis of punch types is warranted. Nonetheless, 

coaches should take note of the high MV across boxers and acknowledge that this 

may actually be a positive characteristic of punching technique and indicative of skilled 
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performance (i.e. athletes intentionally modifying their technique in order to adapt to 

environmental and/or competitive situations; Bartlett, 2007; Button et al., 2003; 

Hanford, 2006; Wagner et al., 2012). 

 

4.4.3. Smallest worthwhile change (SWC%) 

The SWC% data presented herein suggest that certain kinetic and kinematic variables 

require lower increases than others to reflect a ‘meaningful’ change in maximal punch 

performance. Indeed, these novel findings imply that the upper-body kinematics of 

uppercut punches may not require the same magnitude of change as other punch 

types to be confident of a positive effect on performance. This was also the case for 

peak lead and rear leg GRF of hook punches, and lead and rear leg impulse of the 

rear hook and lead uppercut, respectively. Furthermore, the low SWC% for timings of 

peak angular joint velocities (shoulder and elbow) and peak fist velocity across all 

punches suggest that the increases needed to produce ’genuine’ differences in 

performance vary from punch-to-punch and variable-to-variable. Previous research 

across other sports has reported that performance increases of 0.3-1.5% will result in 

‘meaningful’ improvements in track and field competitors (Peltola, 2005) and triathletes 

(Paton & Hopkins, 2005), respectively. Unfortunately, no previous literature has 

examined SWC% in relation to boxing and/or punching performance. However, it is 

apparent that the large biomechanical MV reported in the current study, and 

subsequent SWC% values, suggest the kinetics and kinematics of maximal punching 

require substantial changes to have a ‘meaningful’ impact on technique compared to 

other sporting movements/techniques.  
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Indeed, given the high within- and between subject variability across all punch 

types for the majority of maximal punch kinetic and kinematic measures, it appears 

that performance changes resulting from training interventions would have to be ‘large’ 

in order to exhibit ‘meaningful’ changes from baseline measures. More specifically, 

biomechanical measures with larger MV across punch types (e.g. impulse) will require 

larger changes than variables exhibiting smaller MV (e.g. delivery time) following a 

training intervention. Though future research is required to replicate these findings, 

being able to monitor changes in maximal punch performance following training 

interventions would seem to be a valuable tool for coaches and boxers to be confident 

of genuine change in technique. This could provide useful information for coaches and 

boxers as to the influence of training interventions to specific measures related to 

maximal punching, which may assist in monitoring the magnitude of kinetic and 

kinematic performance changes. Therefore, future research should investigate the 

effects of different training interventions on maximal punching performance, and 

quantify if such interventions produce ‘meaningful’ performance changes on maximal 

punch kinetics and kinematics. 

 

4.4.4. Effect of boxing experience on within-subject variability of kinematic and kinetic 

variables. 

A curious finding was that years of boxing experience was not associated with the MV 

of the kinematic or kinetic variables across punch types; maximal effort punching is 

underpinned by high variability regardless of experience. On the basis of previous 

research examining ballistic actions, it was expected the more experienced the boxer, 

the lesser the MV would be exhibited (Bradshaw et al., 2007; 2009; Fleisig et al., 2009; 



   

195 
 

Lenetsky et al., 2017). Accordingly, the current study’s findings support the notion that 

MV is symptomatic of skilled performers who modify the execution of movement-based 

skills in order to adapt to the task in hand (Bartlett, 2007; Button et al., 2003; Hanford, 

2006; Wagner et al., 2012), particularly during striking actions within combat sports 

(Orth et al., 2018). Even though the trials could be considered somewhat closed 

environments, the ballistic and complex nature of punching still requires the ability to 

adapt features of technique, and this is clearly supported in the data. 

Of further note were the small negative associations (albeit non-significant) of 

experience with peak fist velocity of all punch types. In effect, the more experienced 

the boxer, the lower the MV for this variable. In handball, Wagner et al. (2012) found 

that players across all ability levels compensated for an increase in joint velocity during 

the acceleration phase of a handball throw, yet the more experienced/skilled 

performers exhibited better ‘control’ (i.e. accuracy of high-velocity throws) during this 

process. Other research has also reported how skilled throwers manipulate ball 

release velocity in order to achieve greater outcome consistency (Button et al., 2003; 

Kudo et al., 2000). Though accuracy was not quantified in the current study, that 

boxers were given the instruction to execute knock-out punches, it is possible that the 

negative associations are reflective of MV compensations made by the more 

experienced/skilled boxers. That is, the less experienced and/or skilled boxers 

focussed on ‘fast’ punches, and thereby achieved greater fist velocities across trials, 

whereas the more experienced and/or skilled performers sacrificed measures of fist 

velocity in favour of delivering more forceful punches (Joch et al., 1981; Leal & Spaniol, 

2016; Smith et al., 2000). Importantly this analysis has highlighted that coaches and 

boxers should be made aware that experience has no impact on maximal punch MV, 

with boxers of all experience levels exhibiting comparable MV. This suggests that 
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perhaps individual punching technique, fighting ‘style’ and/or anatomical factors (e.g. 

limb-length) may have a larger influence on MV than experience, though this was 

beyond the scope of the current study and is recommended as an area for future 

research. 

 

4.4.5. Conclusion 

In quantifying the MV of kinematic and kinetic variables that comprise maximal 

punches performed by amateur boxers, the current study has found that: (i) maximal 

punching kinematics and kinetics exhibit high within-subject variability in comparison 

to other sporting movements; (ii) high between-subject variability is also a feature of 

the kinetic and kinematic variables associated with maximal punching, and (iii) no 

relationships exist between within-subject variability of maximal punch kinematic and 

kinetic variables and years of boxing experience. While these findings advance our 

understanding of the movement variance of maximal punches and its association with 

boxing experience, future research pertaining to the independent influence of a boxer’s 

physical qualities on punch kinetics and kinematics is justified. 
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An analysis of selected physical performance-related determinants 

of maximal punching performance among experienced amateur 

boxers 
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The purpose of this study was to quantify the relationships between measures of 

strength, power, speed and three-dimensional (3D) kinetics and kinematics of 

punching techniques characteristic of boxing (jab, rear-hand cross, lead and rear hook, 

lead and rear uppercut). Fourteen male amateur boxers (age: 25.9 ± 4.2 years, 

stature: 180 ± 6.3 cm, body mass: 78.8 ± 12 kg, years of experience: 7.4 ± 2.9 years) 

performed physical assessments (back squat 1RM, bench press 1RM, jump squat 

(30% back squat 1RM), bench throw (30% bench press 1RM), med-ball shot put (4 

kg), 20 m sprint) that were found to correlate with 3D kinematic and kinetic data for 

each punch type. Back squat 1RM exhibited very large relationships with jab, rear-

hand cross and lead hook peak fist velocities (r = 0.70-0.74), and moderate 

associations with rear hook and lead and rear uppercut peak fist velocities (r = 0.41-

0.47), respectively. Bench press 1RM correlated with rear-hand cross, lead hook and 

rear uppercut peak fist velocities (r = 0.51-0.60). Moderate associations between jump 

squat maximum power and peak lead and rear leg GRF for the rear uppercut were 

observed (r = 0.30-0.38), while bench throw maximum power moderately correlated (r 

= 0.32-0.60) with angular shoulder and elbow velocities across all lead hand punches 

(jab, lead hook, and lead uppercut). Rear hand shot put distance correlated with peak 

lead leg GRF and speed (10 and 20 m sprint performance) with peak rear leg GRF (r 

= 0.58-0.65), respectively, across all rear hand punches (cross, hook, and uppercut). 

These findings advance the understanding of how physical qualities relate to 

biomechanical variables of punching. Future research should investigate if enhancing 

specific physical characteristics through strength and conditioning strategies improve 

the kinetic and kinematic characteristics of maximal punching. 

 

Key words: combat sports, boxing, punching, muscular strength, muscular power. 

 

 

 

Given the identification of maximal punch biomechanics (Chapter 3) and the MV 

associated with these qualities (Chapter 4), research is required to quantify the 
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associations between maximal punch biomechanics and physical performance-related 

qualities. This study will therefore investigate such relationships to identify if physical 

performance-related qualities influence biomechanical variables are associated with 

maximal punching. 

 

5.1. Introduction 

The fundamental striking techniques in boxing comprise straight, hook and uppercut 

punches with each technique requiring a synergistic, coordinated recruitment of leg, 

trunk and arm musculature (Turner et al., 2011). The intention during competition is to 

out-perform or knock-out an opponent through the implementation of ‘clean’ punching 

techniques. Bouts are scored based upon the number of ‘quality’ blows landed to the 

target areas (head and torso), domination via technical and tactical superiority and 

competitiveness of each boxer (AIBA, 2017a). In order to cause discomfort to an 

opponent, and potentially, score a knock-out (the most desired outcome to a contest, 

Mack et al., 2010), a boxer must possess a multitude of physical qualities that work 

synergistically to create a punch that is delivered with considerable force and velocity 

(Loturco et al., 2016). 

An examination of amateur boxing competition reveals successful performance 

requires a boxer to possess a range of physical qualities, particularly the ability to 

punch at maximal intensity across the duration of a contest. More specifically, 

alongside the importance of technique, maximal punching necessitates an array of 

physical characteristics that must be augmented if punching performance is to be 

optimised (Chaabene et al., 2015). Understanding the specific components that 

influence a maximal punch will educate boxers and coaches about which physical 
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attributes should be trained during contest preparation (Loturco et al., 2016). Previous 

research has reported that muscular power and fist velocity are the most critical 

components of successful striking in combat sports in relation to landing a clean, 

forceful strike before an opponent has a chance to defend, evade or counter (Chang 

et al., 2011). Additionally, the importance of muscular strength in the upper and lower 

limbs to the execution of maximal punching has been promoted (Chaabene et al., 

2015; Del Vecchio et al., 2019) with the inference being a boxer will struggle to achieve 

high impact forces (and potentially, high peak fist velocities) based on the linear 

relationship between force and power production (Cormie et al., 2011a) - without 

possessing a degree of relative strength (Cormie et al., 2011b). Indeed, muscular 

strength has been shown to influence force-time characteristics (e.g. rate of force 

development, neuromuscular power, limb acceleration) which can be effectively 

transferred to dynamic athletic activities (Suchomel et al., 2016; 2018).   

Although previous research has examined physical and physiological demands 

of boxing training and competition (Chaabene et al., 2015; Del Vecchio, 2011; Guidetti 

et al., 2002; Smith, 2006), few studies have accurately quantified the physical and/or 

physiological correlates of maximal punches. Attempts have been made to determine 

the importance of isometric muscular strength (Guidetti et al., 2002; Khanna & Manna, 

2006; Loturco et al., 2014; Ramírez García et al., 2010) to punching performance, with 

associations reported between upper- and lower-body isometric force production and 

the punching forces of maximal jab (r = 0.68-0.69) and rear-hand cross (r = 0.73-0.83) 

punches among elite amateur boxers (Loturco et al., 2016). However, the limited 

movement specificity and disparate motor unit activation patterns between isometric 

and dynamic/explosive actions means velocity-based measures of performance (e.g. 

joint velocities) tend not to be associated with isometric strength measures (Wilson et 
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al., 1995). Indeed, isometric force (r = 0.47-0.55) and RFD (r = 0.08-0.31) 

assessments have previously exhibited poor relationships with dynamic, high-velocity 

upper-body performance (Murphy & Wilson, 1996). Consequently, as the use of 

dynamic assessments is likely superior to isometric tests in the physical assessment 

of athletes involved in sports comprising high-velocity actions (Tanner & Gore, 2013), 

establishing the associations between physical performance-related traits and 

biomechanical characteristics that influence maximal punching via a range of dynamic 

tests is warranted to verify the role of specific physical traits to specific punch types.  

Though dynamic assessments, such as unloaded jumps (Del Vecchio et al., 

2017; 2019; Pilewska et al., 2017), bench presses (Kim et al., 2018), and medicine 

ball shot puts (Obmiński et al., 2011), have been used in previous research to establish 

relationships with straight punches (jab and rear-hand cross), the influence of strength 

and power measures to hook and uppercut punches remains notably absent. 

Therefore, a comprehensive appraisal of all fundamental punching techniques and 

physical traits purported to influence maximal punching is necessary to establish how 

these traits influence the biomechanical characteristics of all punch types. Additionally, 

previous research concerning strength and power variables and their relationship with 

boxing punches have only focussed upon the associations with punch impact force 

(Loturco et al., 2016; Pilewska et al., 2017) and power (Del Vecchio et al., 2017; 2019), 

whilst the association between strength and power and other key biomechanical 

variables of maximal punching, such as fist velocity, upper-limb joint velocities and 

GRF, has not been investigated. As these variables are critical to the execution of 

maximal punches (Chapter 3; Piorkowski et al., 2011) and have even been shown to 

influence the degree of impact forces generated during a maximal punch (Mack et al., 

2010), establishing their relationship with physical performance-related qualities will 
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provide coaches and boxers with a comprehensive understanding of how punch 

performance can be augmented. Furthermore, relationships between punch kinetics 

and kinematics and additional physical components that may influence maximal 

punching, such as limb acceleration (Adamczyk & Antoniak, 2010, Tanner & Gore, 

2013) and full-body power (Lenetsky et al., 2013; Turner et al., 2011) are lacking in 

the boxing literature. Therefore, the quantification of physical performance-related 

variables that are imperative to punching performance via dynamic assessments could 

provide an improved representation of the influence specific physical qualities have on 

maximal punching performance.  

Recognising training methods that could enhance maximal punching is 

desirable to prepare boxers for the demands of competition and to optimise contest 

preparation (Loturco et al., 2016; Piorkowski et al., 2011). Quantifying traits that 

influence maximal punching could be achieved through a combination of physical 

assessments and biomechanical punch analyses. Contemporary research has 

attempted to verify the role of specific physical qualities and/or training methods to 

maximal punching (Kim et al., 2018). However, due to the different methods 

recommended by authors to improve punching performance, boxers and coaches 

have often depended on ‘time-honoured’ approaches to training (Bourne et al., 2002), 

including Olympic lifts (OL) and barbell/dumbbell lifts (Lenetsky et al., 2013; Ruddock 

et al., 2016; Turner et al., 2011), weighted plyometrics (PT) (Bružas et al., 2016), and 

punching against elastic resistance (Markovic et al., 2016) or weighted resistance 

(Matthews & Comfort, 2008). Increasing the knowledge and understanding of this area 

could foster the development of training practice and punch-specific RT interventions 

with the aim of augmenting key kinetic and kinematic variables associated with the 

fundamental punch techniques observed. The aim of this study therefore was to 
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quantify the relationships between kinetic and kinematic characteristics of maximal 

punches with particular measures reflecting muscular strength, power and speed.  

 

5.2. Methods 

5.2.1. Participants 

Fourteen males (age: 25.9 ± 4.2 years, stature: 179.9 ± 6.3 cm, body mass: 78.8 ± 12 

kg, years of experience: 7.4 ± 2.9 years) across six weight categories (light-

welterweight (60-64 kg) to super-heavyweight (91+ kg)) were recruited from six 

amateur boxing clubs located across the North West of England, based upon current 

boxing experience (≥ 2 years) and official bout history (≥ 2 bouts). A sample size 

calculation (G*Power version 3.1.9.4, Universität Düsseldorf, Dusseldorf, Germany - 

Faul et al., 2009) with relevant input parameters (α level = 0.05, power = 0.8) and 

effect size (0.67 for strength and power performance variables) based upon Loturco 

et al. (2016), produced a sample of 12 (Appendix 1). All participants provided written 

informed consent prior to the study and institutional ethical approval was granted by 

the Faculty of Medicine, Dentistry and Life Sciences Research Ethics Committee. 

 

 

5.2.2. Design 

The study adopted a cross-sectional, within-subjects design to quantify the 

associations between kinetic and kinematic aspects of six maximal punches (jab, rear-

hand cross, lead and rear hook, lead and rear uppercut) and performance across 

selected physical assessments deemed to be influential to maximal punching 
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(Adamczyk et al., 2010; Chang et al., 2011; Lenetsky et al., 2013; Loturco et al., 2016). 

All physical performance-related data were collected in one session and participants 

did not require separate familiarisation trials for either biomechanical or physical 

assessment procedures as all had prior experience (≥ 2 years) of performing the 

punch techniques used in the present study and demonstrated competency for the 

required movement patterns (squat and upper-body horizontal push). 

 

5.2.3. Procedures 

Biomechanical assessment of punch trials were completed ≤ 30 days prior to the 

physical assessments as part of a previous study (Chapter 3), with the acquired data 

from the kinetic and kinematic variables (Table 5.1) used to quantify the relationships 

with physical performance-related variables. Physical assessments were completed 

over a single ~180-minute session with participants advised not to exercise intensely 

24 hours prior to the assessment day (Harman, 2016). The order of assessments was 

as follows: back squat 1RM, bench press 1RM, jump squat, bench throw, medicine 

ball shot put (left and right arms with a 4 kg medicine ball) and 20 m sprint (with times 

also recorded at the 10 m interval) (see Figure 5.1). In line with previous research, the 

order of the physical assessments addressed muscular strength  

followed by muscular power and sprint speed, respectively (Coulson & Archer, 2015; 

Haff & Triplett, 2016; Tanner & Gore, 2013).  Each assessment was separated by a 

5-minute rest period to facilitate maximum recovery between tests (de Salles et al., 

2009; Haff & Triplett, 2016). Maximal power (Pmax) was recorded for each bench 

throw and jump squat trial via a linear transducer (GymAware optical encoder, Kinetic 

Performance Technology, Canberra, Australia), while 10 and 20 m sprint times were 
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measured via single-beam timing gates (Brower TC-System, Brower Timing Systems, 

Utah, USA) set at consistent heights (1 m) across all trials. 

 

 

 

Table 5.1. Kinetic and kinematic variables used to quantify the relationships with 
physical performance-related variables (taken from Chapter 3). 
 

Kinematic variable Kinetic variable 

Punch delivery time (ms) Peak lead leg GRF (N/kg) 

Peak fist velocity (m/s) Peak rear leg GRF (N/kg) 

Peak shoulder joint angular velocity (deg/s) 
Total lead leg net braking impulse  

(N/s/kg) 

Peak elbow joint angular velocity  
(deg/s) 

Total lead leg vertical impulse  
(N/s/kg) 

Timing of peak shoulder joint angular 
velocity (% of movement) 

Total rear leg net propulsive impulse  
(N/s/kg) 

Timing of peak elbow joint angular velocity 
(% of movement) 

Total rear leg vertical impulse  
(N/s/kg) 

 
Note: ms = milliseconds, m/s = metres per second, deg/s = degrees per second, N/kg = Newtons per 
kilogram body mass, N/s/kg = Newtons per second per kilogram body mass 
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Figure 5.1. Schematic of physical assessment procedure. 



   

208 
 

 Muscular strength was measured via back squat and bench press exercises, 

respectively, which were selected based on their validity and reliability in quantifying 

maximal muscular strength (Seo et al., 2012) and inclusion of key movement patterns 

relating to punching performance (elbow extension and leg drive - Cheraghi et al., 

2014; Filimonov et al., 1985). The 1RM testing procedure involved the execution of 

back squats performed for five to ten repetitions at a load anticipated to be 50% of 

participant’s 1RM (based upon participant suggestion), with load subsequently 

increased in moderate increments. A 1RM score was achieved once a participant was 

unable to complete a lift with correct technique (i.e. concentric failure), following the 

protocol recommended by McGuigan (2016) (see Table 5.2). The same protocol was 

subsequently followed for the bench press exercise following a 5-minute recovery 

period from the determination of back squat 1RM. These absolute strength values 

were also expressed in ‘normalised’ strength terms (kg·Mb
-0.67) based upon 

dimensional scaling recommendations whereby load lifted (kg) is divided by body 

mass and raised to the power of 0.67 ((
𝑘𝑔

𝑘𝑔𝑀𝑏0.67)) (Helgerud, Rodas, Kemi, & Hoff, 

2011). This method prevents underestimation and/or overestimation errors typically 

associated with standard strength equations (Heil, 1997; Helgerud et al., 2011; Wisløff, 

Helgerud, & Hoff, 1998). 

Following the 1RM tests, lower- and upper-body Pmax was quantified via jump 

squats and bench throws, performed with 30% of back squat (jump squat) and bench 

press (bench throw) 1RM, respectively, based upon the efficacy of this load at inducing 

Pmax in both the bench throw (Alemany et al., 2005; Falvo et al., 2006; Thomas et al., 

2007) and jump squat (Alemany et al., 2005; Wilson et al., 1993). The jump squat was 

selected instead of Olympic lifts and their derivatives to assess peak lower-body power 

due to the negligible experience of the participants with the latter, the technical 
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proficiency/mastery required to execute them efficiently and the high loads (70-90% 

1RM) required to express peak power with such lifts (Kawamori et al., 2005; Kilduff et 

al., 2007; McBride, Haines, & Kirby, 2011). Moreover, loaded jumps have exhibited 

larger peak power outputs than Olympic lifts in previous research (Cormie et al., 

2007b; Kawamori et al. 2006; MacKenzie et al. 2014) and do not require the same 

technical expertise and loading intensities as Olympic lifts (20% 1RM compared to 

70% 1RM - Oranchuk, Robinson, Switaj, & Drinkwater, 2019). 

 

Table 5.2. One-repetition maximum (1RM) testing procedure (McGuigan, 2016). 
 

Load Repetitions Rest Periods 

50% 1RM 5-10 1 minute 

60-75% 1RM 3-5 2 minutes 

90% 1RM 2-3 2-4 minutes 

First attempt at 1RM 1 2-4 minutes 

If successful, weight increased by 4-9 kg (upper-body 

exercise) or 14-18 kg (lower-body exercise) until 1RM is 

reached. 

 

If unsuccessful, weight decreased by 2-4 kg (upper-body 

exercise) or 7-9 kg (lower-body exercise) before 1RM is 

re-attempted. 

 

1 2-4 minutes 

 

 

On both Pmax assessments, participants performed three maximal intensity 

repetitions with each repetition separated by a 3-minute recovery. Jump squats were 

performed ‘free weight’ with a regular barbell as this variation has demonstrated 
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superior mean power values in comparison to the Smith Machine variation (Sheppard, 

Doyle, & Taylor, 2008). Meanwhile, bench throws were performed on a Smith Machine 

to minimise the risks of injury (Kobayashi et al., 2013).  

After Pmax assessments, participants performed lead and rear hand medicine 

ball shot puts (4 kg) to measure full-body power in a motion possessing similar 

kinematics to a straight punch. ‘Lead’ and ‘rear’ hands were determined by the 

preferred boxing stance of each boxer (orthodox (left hand and foot leading) or 

southpaw (right hand and foot leading) - Hickey, 2006). Previous research has 

highlighted a strong correlation (r = 0.83) between shot put distance and punching 

performance among boxers (Obmiński et al., 2011). Lastly, 20 m sprints with timing 

gates placed at 10 m and 20 m checkpoints quantified short distance linear 

acceleration and speed (Morin et al., 2015). Sprints over short distances (≤ 20 m) 

accurately represent maximum linear acceleration and speed capabilities of athletes 

(Pereira et al., 2018; Young et al., 2008; Young, Benton, & Pryor, 2001), with sprint 

times over 10 m reported as a good reflection of acceleration capabilities and sprints 

between 20-40 m as an estimate of maximum speed capabilities (Haff et al., 2016; 

Young et al., 2008). Moreover, sprint times over such distances have exhibited 

moderate-to-good test-retest reliability (ICC = 0.71-0.98; 95% LoA = −0.01 to -0.12) 

and low error (CV = 1.0-3.1%) in previous research across a range of athletes (Darrall-

Jones et al., 2016; Foden et al., 2015; Waldron, Worsfold, Twist, & Lamb, 2011), 

whereas shorter distances have not exhibited such reliability (5 m: ICC = 0.37, CV = 

4.5% (Standing & Maulder, 2017)). In line with previous research, each participant 

started from a staggered stance 0.3 m behind the first timing gate (Foden, et al., 2015; 

Pereira et al., 2018). Sprint trials were performed across a 45 m stretch of empty space 

(including a ‘run off’ area) located inside a multi-purpose sports hall. Participants 
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completed three maximal 20 m sprints with four minutes recovery provided between 

trials. 

All boxers were ordered to abstain from consuming any form of caffeinated 

beverage(s) (i.e. coffee, energy drinks, ‘pre-workout’ sports supplements) prior to the 

biomechanical and physical performance assessments. This was to ensure 

performance was not influenced by nutritional aids given the role of caffeine in 

enhancing measures of muscular strength (Astorino & Roberson, 2010; Duncan, 

Stanley, Parkhouse, Cook, & Smith, 2013), power (McCormack & Hoffman, 2012) and 

sprint performance (Trexler, Smith-Ryan, Roelofs, Hirsch, & Mock, 2016). In addition, 

boxers were also required to abstain from consuming other sports supplements such 

as creatine, betaine, β-alanine, β-hydroxy β-methylbutyrate (HMB) etc. given the 

muscular strength, power and hypertrophy increases associated with such 

supplements (Ismaeel, 2017; Lanhers et al., 2015; 2017; Maté-Muñoz et al., 2018; 

McIntosh, Love, Haszard, Osborne, & Black, 2018; Nunes et al., 2017). Furthermore, 

boxers were encouraged to eat a well-balanced diet, with an emphasis on the 

consumption of lean protein sources (to increase muscle recovery via the triggering of 

mechanistic/mammalian target of rapamycin (mTOR) and muscle protein synthesis - 

Kessinger, 2018) and carbohydrates (to increase glucose availability during sessions 

and encourage muscle glycogen resynthesis - Shamim et al., 2018). Boxers were also 

encouraged to consume protein and carbohydrate-rich foods (via sports supplements 

or food) before and after the physical assessments. However, though boxers were 

encouraged to undertake these nutritional strategies, it should be stated that nutrition 

was not monitored and/or controlled across the duration of the study. 
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5.2.4. Statistical analysis 

Descriptive statistics (mean ± SD) were generated for all dependent variables (Tables 

5.3 to 5.8) and their distributions checked for normality via Shapiro-Wilk tests utilising 

IBM SPSS (version 23, Chicago, USA). As this condition was met, Pearson product-

moment coefficients with 95% confidence intervals were used to assess the 

relationships between biomechanical variables and performance across various 

physical tests. In the manner of Hopkins (2002), thresholds were interpreted as: < 0.1 

(trivial); 0.1-0.3 (small); 0.3-0.5 (moderate); 0.5-0.7 (large); 0.7-0.9 (very large) and > 

0.9 (nearly perfect). 

 

5.3. Results 

5.3.1. Muscular strength 

Back squat 1RM exhibited very large correlations with peak fist velocities of jab, rear-

hand cross (Tables 5.3 and 5.4) and lead hook (Table 5.5) punches (r = 0.70-0.74), 

while normalised back squat 1RM also showed noteworthy associations with the same 

punches (jab; r = 0.67, rear-hand cross; r = 1.0 lead hook; r = 0.51). Moreover, 

moderate correlations were observed for the same variables with rear hook and lead 

and rear uppercut (Tables 5.6 to 5.8) peak fist velocities (r = 0.31-0.52). Lead uppercut 

peak lead leg and rear uppercut peak rear leg GRF were both associated with back 

squat 1RM performance (r = 0.58-0.60), as were lead leg impulses for the rear-hand 

cross (braking; r = 0.55; vertical; r = 0.56) and rear leg vertical impulse for the rear 

hook (r = 0.55), respectively. 

Numerous variables were positively associated with bench press 1RM, 

including lead hook and rear uppercut peak fist velocities (r = 0.55-0.60), rear-hand 
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cross peak lead leg GRF (r = 0.59), rear uppercut peak rear leg GRF (r = 0.61), and 

lead leg (rear-hand cross; r = 0.56-0.58) and rear leg impulses (rear hook; r = 0.64-

0.68). 

 

5.3.2. Muscular power 

Peak lead and rear leg GRF for the rear uppercut (r = 0.30-0.38), and lead leg net 

braking impulse for the jab and lead hook (r = 0.30-0.46) exhibited moderate 

correlations with jump squat Pmax (Tables 5.3 and 5.5). Jump squat Pmax was also 

positively related to timing of peak shoulder angular velocity for the lead hook (r = 

0.58), Bench throw Pmax correlated with peak shoulder joint angular velocity of lead 

hook and lead uppercut punches (r = 0.32-0.60), along with peak elbow angular 

velocity of all lead hand punches (r = 0.36-0.52). Bench throw performance was also 

associated with lead hook timing of peak shoulder joint angular velocity (r = 0.63) and 

rear uppercut peak lead leg GRF (r = 0.54). Rear hand medicine ball shot put distance 

was associated with peak lead leg GRF across all rear hand punches (r = 0.58-0.66), 

while also exhibiting small to moderate associations with peak rear leg GRF for rear 

hook and rear uppercut punches (r = 0.30-0.50). 

 

5.3.3. Speed 

Sprint speed over both 10 m and 20 m distances exhibited moderate-to-large 

associations (Table 5.4) with peak rear leg GRF across rear-hand cross (r = 0.65 & 

0.58), rear hook (r = 0.45 & 0.50), and rear uppercut (r = 0.32 & 0.33) punches. 

Likewise, both were moderately related to timing of peak elbow joint angular velocity 

of the rear-hand cross (r = 0.68 & 0.72) and rear hook (r = 0.40 & 0.27), respectively. 
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Table 5.3.  Correlations (± 95% CI) between physical performance-related measures and jab kinetic and kinematic variables 

 

Variable 
Back squat 
 1RM (kg) 

Back squat 
1RM  

(kg·Mb
-0.67)  

Bench press 
1RM (kg) 

Bench press 
1RM  

(kg·Mb
-0.67)  

Jump squat 
Pmax (W/kg) 

Bench throw 
Pmax (W/kg) 

Shot put 
(LH - m) 

10 m sprint 
(s) 

20 m sprint 
 (s) 

DT 
0.42  

(-0.13 to 0.99) 
0.08  

(-0.54 to 0.71) 
0.32  

(-0.27 to 0.91) 
0.06  

(-0.55 to 0.69) 
-0.55  

(-1.08 to 0.03) 
-0.03  

(-0.66 to 0.59) 
-0.37  

(-0.95 to 0.21) 
0.25  

(-0.34 to 0.86) 
0.30  

(-0.29 to 0.90) 

FV 
0.74  

(0.31 to 1.16) 
0.67  

(0.21 to 1.13) 
0.36  

(-0.22 to 0.95) 
0.51  

(-0.19 to 1.05) 
0.05  

(-0.57 to 0.68) 
0.40  

(-0.17 to 0.97) 
-0.38  

(-0.96 to 0.19) 
0.33  

(-0.26 to 0.92) 
0.49  

(-0.05 to 1.04) 

SJAV 
0.39  

(0-.18 to 0.97) 
0.40  

(-0.17 to 0.97) 
0.14  

(-0.48 to 0.76) 
0.08  

(-0.53 to 0.71) 
-0.30  

(-0.90 to 0.29) 
0.34  

(-0.47 to 0.76) 
-0.31 

 (-0.90 to 0.28) 
0.25  

(-0.35 to 0.86) 
0.29  

(-0.30 to 0.89) 

EJAV 
0.56 

 (0.04 to 1.08) 
0.42  

(-0.13 to 0.99) 
0.32 

(-0.27 to 0.91) 
0.17  

(-0.44 to 0.79) 
0.19  

(-0.42 to 0.80) 
0.50  

(-0.03 to 1.04) 
-0.06  

(-0.68 to 0.56) 
0.12  

(-0.50 to 0.74) 
0.17  

(-0.44 to 0.79) 

SJAV% 
-0.16 

 (-0.78 to 0.45) 
-0.14  

(-0.76 to 0.47) 
-0.09  

(-0.71 to 0.53) 
-0.06  

(-0.69 to 0.55) 
-0.16 

 (-0.78 to 0.45) 
-0.48  

(-1.03 to 0.07) 
-0.08  

(-0.71 to 0.54) 
0.15  

(-0.46 to 0.77) 
-0.04  

(-0.67 to 0.58) 

EJAV% 
-0.01 

 (-0.69 to 0.65) 
-0.23  

(-0.90 to 0.41) 
0.17 

 (-0.51 to 0.82) 
0.04  

(-0.63 to 0.72) 
-0.62  

(-1.18 to -0.10) 
-0.27  

(-0.93 to 0.37) 
-0.10  

(-0.76 to 0.54) 
0.33  

(-0.30 to 0.98) 
0.20  

(-0.46 to 0.88) 

LLGRF 
0.22 

(-0.38 to 0.83) 
-0.17  

(-0.79 to 0.44) 
0.42  

(-0.14 to 0.99) 
0.20  

(-0.40 to 0.82) 
-0.17  

(-0.79 to 0.44) 
0.001  

(-0.62 to 0.63) 
0.24  

(-0.36 to 0.85) 
0.01  

(-0.62 to 0.63) 
-0.01  

(-0.64 to 0.61) 

RLGRF 
0.26 

 (-0.33 to 0.87) 
-0.01  

(-0.64 to 0.61) 
0.33  

(-0.25 to 0.92) 
0.17  

(-0.44 to 0.79) 
-0.08  

(-0.71 to 0.54) 
0.31  

(-0.28 to 0.90) 
0.08  

(-0.54 to 0.71) 
0.10  

(-0.52 to 0.73) 
0.01  

(-0.62 to 0.63) 

LLFyI 
0.30  

(-0.29 to 0.90) 
0.28  

(-0.32 to 0.88) 
0.11 

 (-0.51 to 0.73) 
0.05  

(-0.57 to 0.68) 
0.46  

(-0.08 to 1.02) 
0.46  

(-0.09 to 1.02) 
0.22  

(-0.39 to 0.83) 
0.18  

(-0.43 to 0.79) 
0.33  

(-0.26 to 0.92) 

LLFzI 
0.07  

(-0.54 to 0.70) 
-0.16  

(-0.78 to 0.46) 
0.12  

(-0.49 to 0.75) 
-0.01 

 (-0.64 to 0.61) 
-0.35  

(-0.93 to 0.29) 
-0.25  

(-0.96 to 0.34) 
-0.27  

(-0.88 to 0.32) 
0.23  

(-0.37 to 0.84) 
0.07  

(-0.55 to 0.70) 

RLFyI 
0.35 

 (-0.23 to 0.94) 
0.004  

(-0.62 to 0.63) 
0.40 

 (-0.17 to 0.97) 
0.18  

(-0.43 to 0.80) 
-0.36  

(-0.95 to 0.21) 
0.23  

(-0.38 to 0.84) 
-0.07  

(-0.70 to 0.55) 
-0.004  

(-0.63 to 0.62) 
0.04  

(-0.58 to 0.67) 

RLFzI 
0.38 

 (-0.20 to 0.96) 
-0.18  

(-0.43 to 0.80) 
0.39 

 (-0.18 to 0.97) 
0.26  

(-0.33 to 0.87) 
-0.47  

(-1.02 to 0.07) 
0.09  

(-0.53 to 0.72) 
-0.30  

(-0.90 to 0.29) 
0.08  

(-0.53 to 0.71) 
0.08  

(-0.54 to 0.70) 

 
DT = delivery time, FV = peak resultant fist velocity, SJAV = peak shoulder joint resultant angular velocity, EJAV = peak elbow joint resultant angular velocity, SJAV% = timing of peak shoulder joint 
resultant angular velocity, EJAV% = timing of peak elbow joint resultant angular velocity, LLGRF = peak lead leg resultant GRF, RLGRF = peak rear leg resultant GRF, LLFyI = lead leg net braking 

impulse, LLFzI = lead leg vertical impulse, RLFyI = rear leg net propulsive impulse, RLFzI = rear leg vertical  impulse, LH = lead hand, RH = rear hand, kg = kilograms,  Mb = body mass, N/kg = Newtons 
per kilogram body mass, W/kg = Watts per kilogram body mass, m = metres, s = seconds, bold text indicates large, very large and nearly perfect (r = ≥ 0.50) correlations. 
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Table 5.4. Correlations (± 95% CI) between physical performance-related measures and rear-hand cross kinetic and kinematic 
variables. 
 

Variable 
Back squat 
 1RM (kg) 

Back squat 
1RM  

(kg·Mb
-0.67)  

Bench press 
1RM (kg) 

Bench press 
1RM  

(kg·Mb
-0.67)  

Jump squat 
Pmax (W/kg) 

Bench throw 
Pmax (W/kg) 

Shot put 
(RH - m) 

10 m sprint 
(s) 

20 m sprint 
 (s) 

DT 
0.42  

(-0.14 to 0.99) 
0.36  

(-0.21 to 0.95) 
0.36 

 (-0.21 to 0.95) 
0.32  

(-0.27 to 0.91) 
0.60 

(0.10 to 1.10) 
0.04 

 (-0.58 to 0.67) 
-0.26  

(-0.87 to 0.33) 
0.08  

(-0.54 to 0.71) 
0.24  

(-0.36 to 0.85) 

FV 
0.70  

(0.26 to 1.15) 
1.00 

 (1.00 to 1.00) 
0.51  

(-0.29 to 1.00) 
0.61  

(0.11 to 1.11) 
0.12  

(-0.49 to 0.75) 
0.50  

(-0.04 to 1.04) 
0.02  

(-0.60 to 0.65) 
0.44  

(-0.11 to 1.01) 
0.50  

(-0.03 to 1.04) 

SJAV 
-0.39  

(-0.97 to 0.18) 
-0.29  

(-0.89 to 0.31) 
-0.31 

 (-0.90 to 0.28) 
-0.22 

 (-0.83 to 0.38) 
-0.09  

(-0.71 to 0.53) 
-0.05  

(-0.68 to 0.58) 
-0.34  

(-0.93 to 0.25) 
0.10  

(-0.52 to 0.72) 
0.17  

(-0.44 to 0.79) 

EJAV 
-0.30  

(-0.90 to 0.29) 
-0.47  

(-1.02 to 0.07) 
-0.11 

 (-0.73 to 0.51) 
-0.17 

 (-0.79 to 0.44) 
-0.19  

(-0.81 to 0.41) 
0.05  

(-0.57 to 0.68) 
0.02  

(-0.65 to 0.60) 
0.03  

(-0.59 to 0.65) 
0.03  

(-0.59 to 0.66) 

SJAV% 
0.23  

(-0.41 to 0.89) 
0.17 

 (-0.49 to 0.84) 
0.27  

(-0.37 to 0.93) 
0.24  

(-0.40 to 0.91) 
-0.13  

(-0.82 to 0.54) 
-0.26  

(-0.92 to 0.38) 
0.09  

(-0.58 to 0.77) 
0.45  

(-0.14 to 1.07) 
0.39  

(-0.21 to 1.04) 

EJAV% 
0.22  

(-0.42 to 0.88) 
-0.10  

(-0.78 to 0.56) 
-0.20  

(-0.86 to 0.45) 
-0.53 

 (-1.12 to 0.02) 
-0.34  

(-1.00 to 0.28) 
-0.38  

(-1.02 to 0.23) 
-0.28 

(-0.94 to 0.36) 
0.68  

(0.20 to 1.20) 
0.72  

(0.28 to 1.22) 

LLGRF 
0.44 

 (-0.12 to 1.00) 
-0.06 

 (-0.69 to 0.56) 
0.59  

(0.09 to 1.10) 
0.30  

(-0.29 to 0.90) 
0.09  

(-0.53 to 0.72) 
0.29  

(-0.31 to 0.89) 
0.66  

(0.19 to 1.13) 
0.01  

(-0.62 to 0.63) 
-0.02  

(-0.65 to 0.60) 

RLGRF 
0.35  

(-0.23 to 0.94) 
0.05  

(-0.57 to 0.68) 
0.29  

(-0.30 to 0.89) 
0.09  

(-0.53 to 0.71) 
-0.05  

(-0.68 to 0.57) 
0.13  

(-0.48 to 0.75) 
0.19  

(-0.42 to 0.80) 
0.65  

(0.17 to 1.13) 
0.58  

(0.07 to 1.09) 

LLFyI 
0.55  

(0.02 to 1.07) 
-0.37 

 (-0.95 to 0.21) 
0.58  

(0.07 to 1.09) 
-0.47 

 (-1.02 to 0.07) 
0.28  

(-0.31 to 0.88) 
0.24  

(-0.85 to 0.37) 
0.04  

(-0.67 to 0.58) 
0.06  

(-0.56 to 0.69) 
0.11 

(-0.73 to 0.51) 

LLFzI 
0.56 

 (0.04 to 1.08) 
0.42  

(-0.15 to 0.99) 
0.56 

 (0.04 to 1.08) 
0.47 

 (-0.07 to 1.03) 
-0.30  

(-0.90 to 0.29) 
0.25  

(-0.34 to 0.86) 
-0.03  

(-0.65 to 0.59) 
-0.10  

(-0.64 to 0.61) 
0.16 

(-0.46 to 0.78) 

RLFyI 
0.45  

(-0.11 to 1.01) 
0.31 

 (-0.28 to 0.91) 
0.49 

 (-0.04 to 1.04) 
0.42  

(-0.14 to 0.99) 
-0.35  

(-0.94 to 0.23) 
0.17  

(-0.44 to 0.79) 
-0.07  

(-0.70 to 0.54) 
0.02  

(-0.60 to 0.65) 
0.18  

(-0.43 to 0.80) 

RLFzI 
0.41 

 (-0.16 to 0.98) 
-0.42 

 (-0.13 to 0.99) 
0.47 

 (-0.08 to 1.02) 
0.50  

(-0.04 to 1.04) 
-0.31  

(-0.91 to 0.27) 
0.22  

(-0.38 to 0.83) 
-0.18  

(-0.80 to 0.43) 
-0.07  

(-0.69 to 0.55) 
0.08  

(-0.54 to 0.71) 

 
DT = delivery time, FV = peak resultant fist velocity, SJAV = peak shoulder joint resultant angular velocity, EJAV = peak elbow joint resultant angular velocity, SJAV% = timing of peak shoulder joint 
resultant angular velocity, EJAV% = timing of peak elbow joint resultant angular velocity, LLGRF = peak lead leg resultant GRF, RLGRF = peak rear leg resultant GRF, LLFyI = lead leg net braking 

impulse, LLFzI = lead leg vertical impulse, RLFyI = rear leg net propulsive impulse, RLFzI = rear leg vertical  impulse, LH = lead hand, RH = rear hand, kg = kilograms,  Mb = body mass, N/kg = Newtons 
per kilogram body mass, W/kg = Watts per kilogram body mass, m = metres, s = seconds, bold text indicates large, very large and nearly perfect (r = ≥ 0.50) correlations. 
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Table 5.5. Correlations (± 95% CI) between physical performance-related measures and lead hook kinetic and kinematic 
variables. 
 

Variable 
Back squat 
 1RM (kg) 

Back squat 
1RM  

(kg·Mb
-0.67)  

Bench press 
1RM (kg) 

Bench press 
1RM  

(kg·Mb
-0.67)  

Jump squat 
Pmax (W/kg) 

Bench throw 
Pmax (W/kg) 

Shot put 
(LH - m) 

10 m sprint 
(s) 

20 m sprint 
 (s) 

DT 
-0.10 

(-0.72 to 0.52) 
-0.10  

(-0.73 to 0.51) 
0.02 

(-0.60 to 0.65) 
0.04 

(-0.58 to 0.67) 
-0.55  

(-1.08 to 0.03) 
-0.14 

(-0.77 to 0.47) 
-0.29 

(-0.89 to 0.30) 
-0.26 

(-0.87 to 0.34) 
-0.27 

(-0.87 to 0.33) 

FV 
0.73 

(0.30 to 1.16) 
0.51  

(-0.02 to 1.05) 
0.60 

(0.10 to 1.10) 
0.42 

(-0.13 to 0.99) 
0.31 

(-0.28 to 0.90) 
0.36 

(-0.21 to 0.95) 
-0.01 

(-0.64 to 0.61) 
0.36 

(-0.21 to 0.95) 
0.44 

(-0.11 to 1.01) 

SJAV 
0.35 

(-0.23 to 0.94) 
0.31  

(-0.28 to 0.90) 
0.29 

(-0.31 to 0.89) 
0.24  

(-0.36 to 0.85) 
0.43 

(-0.13 to 1.00) 
0.60 

(0.09 to 1.10) 
-0.16 

(-0.78 to 0.46) 
0.14 

(-0.47 to 0.77) 
0.29 

(-0.31 to 0.89) 

EJAV 
0.53 

(0.006 to 1.06) 
0.42  

(-0.14 to 0.99) 
0.18 

(-0.43 to 0.80) 
0.02  

(-0.60 to 0.65) 
0.39 

(-0.18 to 0.97) 
0.36 

(-0.22 to 0.95) 
0.03 

(-0.59 to 0.66) 
0.36 

(-0.22 to 0.94) 
0.34 

(-0.25 to 0.93) 

SJAV% 
0.20 

(-0.40 to 0.82) 
0.13  

(-0.49 to 0.75) 
0.44 

(-0.12 to 1.00) 
0.45  

(-0.10 to 1.01) 
0.58 

(0.07 to 1.09) 
0.63 

(0.14 to 1.12) 
0.40 

(-0.17 to 0.97) 
-0.54 

(-1.07 to 0.01) 
-0.44 

(-1.01 to 0.11) 

EJAV% 
-0.10 

(-0.72 to 0.52) 
-0.19  

(-0.81 to 0.42) 
-0.30 

(-0.90 to 0.29) 
-0.42  

(-0.99 to 0.15) 
-0.49 

(-1.04 to 0.04) 
-0.44 

(-1.00 to 0.11) 
-0.14 

(-0.76 to 0.47) 
0.11 

(-0.50 to 0.74) 
-0.01 

(-0.64 to 0.61) 

LLGRF 
0.23 

(-0.38 to 0.84) 
-0.19  

(-0.81 to 0.42) 
0.19 

(-0.42 to 0.81) 
-0.10  

(-0.73 to 0.52) 
-0.07 

(-0.70 to 0.55) 
0.04 

(-0.58 to 0.67) 
0.04 

(-0.58 to 0.66) 
0.25 

(-0.35 to 0.86) 
0.29 

(-0.30 to 0.89) 

RLGRF 
-0.07 

(-0.70 to 0.55) 
-0.22  

(-0.83 to 0.39) 
0.30 

(-0.29 to 0.90) 
0.30  

(-0.29 to 0.90) 
0.03 

(-0.59 to 0.66) 
0.15 

(-0.46 to 0.77) 
0.34 

(-0.24 to 0.93) 
-0.25 

(-0.85 to 0.35) 
-0.40 

(-0.97 to 0.17) 

LLFyI 
0.70  

(0.26 to 1.15) 
-0.16  

(-0.78 to 0.45) 
-0.10  

(-0.64 to 0.61) 
-0.18  

(-0.80 to 0.43) 
0.30 

(-0.29 to 0.90) 
-0.50 

(-0.67 to 0.57) 
0.38 

(-0.10 to 0.96) 
0.41 

(-0.16 to 0.98) 
0.30 

(-0.29 to 0.90) 

LLFzI 
0.70  

(0.26 to 1.15) 
-0.18 

 (-0.79 to 0.43) 
0.12 

(-0.50 to 0.74) 
0.09 

 (-0.52 to 0.72) 
-0.34 

(-0.93 to 0.24) 
-0.01 

(-0.63 to 0.61) 
-0.05 

(-0.67 to 0.57) 
-0.30 

(-0.90 to 0.29) 
-0.32 

(-0.92 to 0.26) 

RLFyI 
-0.22 

(-0.84 to 0.38) 
-0.15  

(-0.78 to 0.46) 
0.04 

(-0.58 to 0.67) 
0.15 

 (-0.46 to 0.77) 
-0.26 

(-0.87 to 0.33) 
-0.06 

(-0.69 to 0.55) 
-0.19 

(-0.81 to 0.42) 
0.52  

(-0.005 to 1.06) 
-0.49 

(-1.04 to 0.05) 

RLFzI 
-0.20 

(-0.82 to 0.41) 
-0.07 

 (-0.70 to 0.55) 
0.12 

(-0.50 to 0.74) 
0.29  

(-0.30 to 0.89) 
-0.32 

(-0.91 to 0.27) 
-0.05 

(-0.68 to 0.57) 
-0.12 

(-0.74 to 0.49) 
-0.46 

(-1.02 to 0.09) 
0.50  

(-0.04 to 1.04) 

 
DT = delivery time, FV = peak resultant fist velocity, SJAV = peak shoulder joint resultant angular velocity, EJAV = peak elbow joint resultant angular velocity, SJAV% = timing of peak shoulder joint 
resultant angular velocity, EJAV% = timing of peak elbow joint resultant angular velocity, LLGRF = peak lead leg resultant GRF, RLGRF = peak rear leg resultant GRF, LLFyI = lead leg net braking 

impulse, LLFzI = lead leg vertical impulse, RLFyI = rear leg net propulsive impulse, RLFzI = rear leg vertical  impulse, LH = lead hand, RH = rear hand, kg = kilograms,  Mb = body mass, N/kg = Newtons 
per kilogram body mass, W/kg = Watts per kilogram body mass, m = metres, s = seconds, bold text indicates large, very large and nearly perfect (r = ≥ 0.50) correlations. 
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Table 5.6. Correlations (± 95% CI) between physical performance-related measures and rear hook kinetic and kinematic 
variables. 
 

Variable 
Back squat 
 1RM (kg) 

Back squat 
1RM  

(kg·Mb
-0.67)  

Bench press 
1RM (kg) 

Bench press 
1RM  

(kg·Mb
-0.67)  

Jump squat 
Pmax (W/kg) 

Bench throw 
Pmax (W/kg) 

Shot put 
(RH - m) 

10 m sprint 
(s) 

20 m sprint 
 (s) 

DT 
0.30  

(-0.29 to 0.90) 
-0.18  

(-0.79 to 0.43) 
0.39  

(-0.18 to 0.97) 
0.09  

(-0.53 to 0.72) 
-0.24  

(-0.85 to 0.36) 
-0.01 

 (-0.64 to 0.61) 
0.25  

(-0.35 to 0.86) 
-0.21  

(-0.83 to 0.39) 
-0.09 

 (-0.72 to 0.53) 

FV 
0.41  

(-0.15 to 0.98) 
0.31  

(-0.28 to 0.91) 
0.30 

 (-0.29 to 0.90) 
0.21  

(-0.40 to 0.82) 
0.13  

(-0.48 to 0.76) 
0.34 

 (-0.25 to 0.93) 
-0.02  

(-0.65 to 0.60) 
0.17  

(-0.45 to 0.79) 
0.34  

(-0.24 to 0.93) 

SJAV 
-0.38  

(-0.96 to 0.19) 
-0.36  

(-0.94 to 0.22) 
-0.41 

 (-0.89 to 0.15) 
-0.41  

(-0.98 to 0.16) 
-0.03  

(-0.66 to 0.59) 
0.09 

 (-0.53 to 0.71) 
-0.23  

(-0.84 to 0.37) 
0.12  

(-0.50 to 0.74) 
0.22  

(-0.39 to 0.83) 

EJAV 
-0.10  

(-0.73 to 0.52) 
-0.11  

(-0.73 to 0.51) 
-0.12  

(-0.75 to 0.49) 
-0.14  

(-0.76 to 0.47) 
-0.09  

(-0.71 to 0.53) 
-0.01  

(-0.64 to 0.61) 
-0.34  

(-0.93 to 0.25) 
-0.04  

(-0.67 to 0.58) 
-0.07 

 (-0.70 to 0.55) 

SJAV% 
0.15  

(-0.46 to 0.77) 
0.05  

(-0.57 to 0.68)  
0.01  

(-0.61 to 0.64) 
-0.07  

(-0.70 to 0.54) 
0.02  

(-0.60 to 0.64) 
0.13  

(-0.48 to 0.76) 
-0.14  

(-0.76 to 0.48) 
-0.11  

(-0.73 to 0.51) 
-0.29 

 (-0.89 to 0.30) 

EJAV% 
0.05  

(-0.63 to 0.74) 
-0.19  

(-0.86 to 0.47) 
-0.23  

(-0.86 to 0.39) 
-0.48 

 (-1.03 to 0.09) 
-0.51  

(-0.99 to 0.05) 
-0.34  

(-0.96 to 0.27) 
-0.27  

(-0.93 to 0.38) 
0.40 

 (-0.20 to 1.03) 
0.27 

 (-0.38 to 0.93) 

LLGRF 
0.20  

(-0.41 to 0.82) 
-0.30  

(-0.90 to 0.30) 
0.36  

(-0.22 to 0.94) 
0.07  

(-0.54 to 0.70) 
0.22 

(-0.38 to 0.84) 
0.26  

(-0.34 to 0.86) 
0.58  

(0.06 to 1.09) 
0.06 

 (-0.55 to 0.69) 
-0.09  

(-0.72 to 0.52) 

RLGRF 
0.39 

 (-0.18 to 0.97) 
-0.06  

(-0.56 to 0.69) 
0.34  

(-0.24 to 0.93) 
0.11  

(-0.51 to 0.73) 
0.18  

(-0.43 to 0.80) 
0.15  

(-0.46 to 0.77) 
0.30  

(-0.29 to 0.90) 
0.45 

 (-0.10 to 1.01) 
0.50  

(-0.04 to 1.04) 

LLFyI 
-0.34  

(-0.93 to 0.24) 
0.04  

(-0.58 to 0.66) 
-0.44  

(-1.00 to 0.12) 
-0.21 

 (-0.82 to 0.40) 
0.01  

(-0.62 to 0.63) 
-0.12  

(-0.74 to 0.50) 
-0.37  

(-0.96 to 0.20) 
0.22  

(-0.38 to 0.83) 
0.16  

(-0.45 to 0.78) 

LLFzI 
0.16  

(-0.45 to 0.78) 
-0.24  

(-0.85 to 0.37) 
0.28  

(-0.32 to 0.88) 
0.04  

(-0.58 to 0.67) 
-0.02  

(-0.65 to 0.60) 
0.01  

(-0.62 to 0.63) 
0.33  

(-0.25 to 0.92) 
-0.23 

 (-0.84 to 0.38) 
-0.17  

(-0.79 to 0.44) 

RLFyI 
0.52  

(-0.005 to 1.06) 
-0.01  

(-0.64 to 0.61) 
0.64  

(0.15 to 1.12) 
0.30  

(-0.28 to 0.90) 
-0.05  

(-0.68 to 0.57) 
0.19  

(-0.41 to 0.81) 
0.51  

(-0.02 to 1.05) 
-0.08  

(-0.71 to 0.54) 
-0.01  

(-0.63 to 0.61) 

RLFzI 
0.55  

(0.02 to 1.07) 
0.08  

(-0.54 to 0.71) 
0.68  

(0.23 to 1.14) 
0.41  

(-0.15 to 0.98) 
-0.05  

(-0.67 to 0.57) 
0.22  

(0.38 to 0.84) 
0.45  

(-0.10 to 1.01) 
-0.17  

(-0.79 to 0.44) 
-0.06  

(-0.69 to 0.56) 

 
DT = delivery time, FV = peak resultant fist velocity, SJAV = peak shoulder joint resultant angular velocity, EJAV = peak elbow joint resultant angular velocity, SJAV% = timing of peak shoulder joint 
resultant angular velocity, EJAV% = timing of peak elbow joint resultant angular velocity, LLGRF = peak lead leg resultant GRF, RLGRF = peak rear leg resultant GRF, LLFyI = lead leg net braking 

impulse, LLFzI = lead leg vertical impulse, RLFyI = rear leg net propulsive impulse, RLFzI = rear leg vertical  impulse, LH = lead hand, RH = rear hand, kg = kilograms,  Mb = body mass, N/kg = Newtons 
per kilogram body mass, W/kg = Watts per kilogram body mass, m = metres, s = seconds, bold text indicates large, very large and nearly perfect (r = ≥ 0.50) correlations. 
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Table 5.7. Correlations (± 95% CI) between physical performance-related measures and lead uppercut kinetic and kinematic 
variables. 
 

Variable 
Back squat 
 1RM (kg) 

Back squat 
1RM  

(kg·Mb
-0.67)  

Bench press 
1RM (kg) 

Bench press 
1RM  

(kg·Mb
-0.67)  

Jump squat 
Pmax (W/kg) 

Bench throw 
Pmax (W/kg) 

Shot put 
(LH - m) 

10 m sprint 
(s) 

20 m sprint 
 (s) 

DT 
-0.32  

(-0.92 to 0.26) 
-0.43  

(-1.00 to 0.12) 
-0.14  

(-0.76 to 0.47) 
-0.17  

(-0.79 to 0.44) 
-0.69  

(-1.14 to -0.24) 
-0.33  

(-0.92 to 0.26) 
-0.13 

 (-0.75 to 0.48) 
-0.13  

(-0.75 to 0.48) 
-0.14  

(-0.76 to 0.47) 

FV 
0.42  

(-0.14 to 0.99) 
0.30  

(-0.29 to 0.90) 
0.18  

(-0.43 to 0.80) 
0.03 

 (-0.59 to 0.66) 
0.28 

 (-0.31 to 0.88) 
0.11  

(-0.51 to 0.73) 
-0.28  

(-0.81 to 0.41) 
0.36  

(-0.21 to 0.95) 
0.43 

 (-0.13 to 0.99) 

SJAV 
0.41  

(-0.15 to 0.99) 
0.46  

(-0.08 to 1.02) 
0.27  

(-0.33 to 0.87) 
0.26  

(-0.34 to 0.87) 
0.23  

(-0.38 to 0.84) 
0.32 

 (-0.27 to 0.91) 
-0.34 

 (-0.93 to 0.24) 
0.09  

(-0.53 to 0.71) 
0.20 

 (-0.41 to 0.82) 

EJAV 
0.41  

(-0.16 to 0.98) 
0.44  

(-0.12 to 1.00) 
0.28  

(-0.32 to 0.88) 
0.28 

 (-0.32 to 0.88) 
0.51 

 (-0.02 to 1.05) 
0.52 

 (-0.01 to 1.05) 
0.29  

(-0.31 to 0.89) 
-0.08 

 (-0.71 to 0.54) 
0.01  

(-0.61 to 0.64) 

SJAV% 
-0.29  

(-0.89 to 0.31) 
-0.42 

 (-0.99 to 0.15) 
-0.40 

 (-0.97 to 0.17) 
-0.52 

 (-1.06 to 0.005) 
0.70  

(0.26 to 1.15) 
-0.59 

 (-1.10 to -0.09) 
-0.44 

 (-1.01 to 0.11) 
0.21 

 (-0.39 to 0.83) 
0.22  

(-0.38 to 0.84) 

EJAV% 
-0.02  

(-0.65 to 0.60) 
-0.27 

 (-0.88 to 0.32) 
-0.10  

(-0.73 to 0.51) 
-0.30 

 (-0.90 to 0.30) 
-0.38  

(-0.96 to 0.19) 
-0.30 

 (-0.90 to 0.29) 
-0.11  

(-0.73 to 0.51) 
-0.15  

(-0.77 to 0.46) 
-0.16 

 (-0.78 to 0.45) 

LLGRF 
0.58  

(0.06 to 1.09) 
-0.03  

(-0.66 to 0.59) 
0.36 

 (-0.21 to 0.95) 
-0.08 

 (-0.71 to 0.54) 
0.07 

 (-0.55 to 0.70) 
0.34 

 (-0.25 to 0.93) 
0.20 

 (-0.41 to 0.81) 
0.36  

(-0.22 to 0.95) 
0.37 

 (-0.20 to 0.95) 

RLGRF 
0.01  

(-0.61 to 0.64) 
-0.05 

 (-0.68 to 0.57) 
0.36  

(-0.22 to 0.94) 
0.40  

(-0.17 to 0.97) 
0.10 

 (-0.52 to 0.72) 
0.04 

 (-0.58 to 0.67) 
0.20 

 (-0.41 to 0.81) 
-0.14 

 (-0.76 to 0.47) 
-0.23  

(-0.84 to 0.37) 

LLFyI 
0.06  

(-0.55 to 0.69) 
0.23  

(-0.38 to 0.84) 
-0.05 

 (-0.67 to 0.57) 
0.02 

 (-0.60 to 0.64) 
0.23 

 (-0.37 to 0.84) 
-0.15 

 (-0.77 to 0.47) 
-0.07 

 (-0.70 to 0.55) 
0.50 

 (-0.04 to 1.04) 
0.50  

(-0.03 to 1.04) 

LLFzI 
-0.14 

 (-0.77 to 0.47) 
-0.45  

(-1.01 to 0.10) 
0.08  

(-0.54 to 0.71) 
-0.06 

 (-0.68 to 0.56) 
-0.35  

(-0.94 to 0.23) 
0.07 

 (-0.55 to 0.70) 
0.20 

 (-0.40 to 0.82) 
-0.25 

 (-0.86 to 0.35) 
-0.24 

 (-0.85 to 0.37) 

RLFyI 
-0.38 

 (-0.96 to 0.19) 
-0.44 

 (-1.01 to 0.11) 
0.01 

 (-0.61 to 0.64) 
0.08  

(-0.54 to 0.70) 
-0.19 

 (-0.81 to 0.42) 
0.09 

 (-0.53 to 0.72) 
0.16 

 (-0.45 to 0.78) 
-0.48 

 (-1.03 to 0.06) 
-0.49 

 (-1.04 to 0.04) 

RLFzI 
-0.50 

 (-1.04 to 0.03) 
-0.44  

(-1.00 to 0.11) 
-0.01 

 (-0.63 to 0.61) 
0.15  

(-0.46 to 0.77) 
-0.30 

 (-0.90 to 0.29) 
-0.07  

(-0.69 to 0.55) 
0.17  

(0.44 to 0.79) 
-0.47  

(-1.02 to 0.08) 
-0.51  

(-1.05 to 0.01) 

 
DT = delivery time, FV = peak resultant fist velocity, SJAV = peak shoulder joint resultant angular velocity, EJAV = peak elbow joint resultant angular velocity, SJAV% = timing of peak shoulder joint 
resultant angular velocity, EJAV% = timing of peak elbow joint resultant angular velocity, LLGRF = peak lead leg resultant GRF, RLGRF = peak rear leg resultant GRF, LLFyI = lead leg net braking 

impulse, LLFzI = lead leg vertical impulse, RLFyI = rear leg net propulsive impulse, RLFzI = rear leg vertical  impulse, LH = lead hand, RH = rear hand, kg = kilograms,  Mb = body mass, N/kg = Newtons 
per kilogram body mass, W/kg = Watts per kilogram body mass, m = metres, s = seconds, bold text indicates large, very large and nearly perfect (r = ≥ 0.50) correlations. 
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Table 5.8. Correlations (± 95% CI) between physical performance-related measures and rear uppercut kinetic and kinematic 
variables. 
 

Variable 
Back squat 
 1RM (kg) 

Back squat 
1RM  

(kg·Mb
-0.67)  

Bench press 
1RM (kg) 

Bench press 
1RM  

(kg·Mb
-0.67)  

Jump squat 
Pmax (W/kg) 

Bench throw 
Pmax (W/kg) 

Shot put 
(RH - m) 

10 m sprint 
(s) 

20 m sprint 
 (s) 

DT 
-0.13  

(-0.75 to 0.49) 
-0.08  

(-0.71 to 0.54) 
0.01 

 (-0.62 to 0.63) 
0.07  

(-0.55 to 0.70) 
-0.60  

(-1.10 to -0.11) 
-0.29  

(-0.89 to 0.31) 
-0.36 

 (-0.94 to 0.22) 
0.03  

(-0.59 to 0.66) 
-0.07 

 (-0.70 to 0.55) 

FV 
0.47 

 (-0.08 to 1.02) 
0.52  

(0.006 to 1.06) 
0.55  

(0.26 to 1.07) 
0.61  

(0.11 to 1.10) 
0.08 

 (-0.53 to 0.71) 
0.36  

(-0.21 to 0.95) 
0.24  

(-0.36 to 0.85) 
-0.08  

(-0.71 to 0.53) 
0.05 

 (-0.56 to 0.68) 

SJAV 
-0.33  

(-0.93 to 0.25) 
-0.05  

(-0.68 to 0.57) 
-0.47  

(-1.02 to 0.07) 
-0.33  

(-0.92 to 0.25) 
-0.13 

 (-0.75 to 0.49) 
-0.19  

(-0.81 to 0.41) 
-0.50  

(-1.05 to 0.03) 
-0.07  

(-0.69 to 0.55) 
0.08  

(-0.54 to 0.70) 

EJAV 
-0.33 

 (-0.92 to 0.25) 
-0.31  

(-0.91 to 0.28) 
-0.25 

 (-0.86 to 0.35) 
-0.22 

 (-0.83 to 0.39) 
-0.15  

(-0.78 to 0.46) 
-0.05 

 (-0.68 to 0.57) 
-0.38 

 (-0.96 to 0.19) 
-0.09 

 (-0.72 to 0.52) 
-0.19 

 (-0.80 to 0.42) 

SJAV% 
0.14  

(-0.48 to 0.76) 
0.21  

(-0.40 to 0.82) 
0.07 

 (-0.55 to 0.70) 
0.10  

(-0.52 to 0.72) 
-0.29 

 (-0.89 to 0.30) 
-0.24 

 (-0.85 to 0.36) 
-0.25  

(-0.86 to 0.35) 
0.26  

(-0.33 to 0.87) 
0.24 

 (-0.36 to 0.85) 

EJAV% 
-0.40 

 (-0.98 to 0.16) 
-0.38 

 (-0.96 to 0.19) 
-0.46 

 (-1.01 to 0.09) 
-0.46 

 (-1.02 to 0.09) 
-0.19 

 (-0.81 to 0.42) 
-0.29 

 (-0.89 to 0.31) 
-0.36 

 (-0.95 to 0.21) 
-0.21  

(-0.82 to 0.40) 
-0.24 

 (-0.85 to 0.36) 

LLGRF 
0.42  

(-0.15 to 0.99) 
-0.05  

(-0.67 to 0.57) 
0.43  

(-0.12 to 1.00) 
0.14  

(-0.48 to 0.76) 
0.38 

 (-0.19 to 0.96) 
0.54  

(0.01 to 1.07) 
0.64  

(0.16 to 1.12) 
0.02  

(-0.60 to 0.65) 
-0.03  

(-0.66 to 0.59) 

RLGRF 
0.60  

(0.11 to 1.10) 
0.15  

(-0.46 to 0.77) 
0.61  

(0.12 to 1.11) 
0.32 

 (-0.27 to 0.91) 
0.30 

 (-0.29 to 0.90) 
0.37 

 (-0.20 to 0.95) 
0.50 

 (-0.04 to 1.04) 
0.32 

 (-0.27 to 0.91) 
0.33 

 (-0.26 to 0.92) 

LLFyI 
-0.21  

(-0.83 to 0.39) 
-0.19 

 (-0.80 to 0.42) 
-0.22  

(-0.83 to 0.39) 
-0.20 

 (-0.82 to 0.41) 
-0.07 

 (-0.69 to 0.55) 
-0.33  

(-0.93 to 0.25) 
-0.26 

 (-0.87 to 0.34) 
0.26  

(-0.34 to 0.87) 
0.04 

 (-0.58 to 0.67) 

LLFzI 
-0.34  

(-0.93 to 0.24) 
-0.30 

 (-0.90 to 0.29) 
-0.18  

(-0.80 to 0.43) 
-0.11 

 (-0.74 to 0.51) 
-0.35  

(-0.93 to 0.29) 
-0.23 

 (-0.84 to 0.37) 
-0.30 

 (-0.90 to 0.29) 
-0.17 

 (-0.79 to 0.44) 
-0.18  

(-0.80 to 0.42) 

RLFyI 
0.27  

(-0.33 to 0.87) 
-0.13  

(-0.48 to 0.75) 
0.35  

(-0.23 to 0.94) 
0.29  

(-0.30 to 0.89) 
0.13  

(-0.48 to 0.75) 
0.43  

(-0.13 to 0.99) 
0.40  

(-0.17 to 0.98) 
-0.27 

 (-0.87 to 0.33) 
-0.05 

 (-0.68 to 0.57) 

RLFzI 
-0.05  

(-0.68 to 0.57) 
-0.07 

 (-0.70 to 0.55) 
0.28 

 (-0.31 to 0.88) 
0.36  

(-0.22 to 0.94) 
-0.03  

(-0.66 to 0.59) 
0.11 

 (-0.50 to 0.74) 
-0.01 

 (-0.64 to 0.61) 
-0.30  

(-0.90 to 0.29) 
-0.35  

(-0.94 to 0.23) 

 
DT = delivery time, FV = peak resultant fist velocity, SJAV = peak shoulder joint resultant angular velocity, EJAV = peak elbow joint resultant angular velocity, SJAV% = timing of peak shoulder joint 
resultant angular velocity, EJAV% = timing of peak elbow joint resultant angular velocity, LLGRF = peak lead leg resultant GRF, RLGRF = peak rear leg resultant GRF, LLFyI = lead leg net braking 

impulse, LLFzI = lead leg vertical impulse, RLFyI = rear leg net propulsive impulse, RLFzI = rear leg vertical  impulse, LH = lead hand, RH = rear hand, kg = kilograms,  Mb = body mass, N/kg = Newtons 
per kilogram body mass, W/kg = Watts per kilogram body mass, m = metres, s = seconds, bold text indicates large, very large and nearly perfect (r = ≥ 0.50) correlations. 
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5.4. Discussion 

This investigation among experienced amateur boxers has established that 

dynamic measures of strength, power and speed are associated with a multitude of 

biomechanical features comprising different punch techniques. The kinetics and 

kinematics of straight punches were largely influenced by lower-body muscular 

strength, with moderate relationships observed for both jab and rear-hand cross 

punches. Meanwhile, moderate correlations were also observed between lead hook 

kinetics and kinematics and 20m sprint speed, in addition to rear hook variables and 

upper-body strength, respectively. For uppercuts, the lead punch was most strongly 

associated with lower-body power, and the rear uppercut with full-body power. 

Moreover, upper- and lower-body strength influenced peak fist velocity across most 

punch types, while upper-body power was associated with peak angular shoulder and 

elbow joint velocities across all lead hand punches. Furthermore, lower-body power 

exhibited relationships with rear uppercut peak lead and rear leg GRF, rear hand 

medicine ball shot put distance related to peak lead leg GRF of all rear hand punch 

types, while peak rear leg GRF of all rear hand punches was associated with 10 m 

and 20 m sprint speeds, respectively. These novel findings reflect that muscular 

strength, power and speed qualities (particularly of the lower-limbs) are determinants 

of the kinetic and kinematic characteristics of maximal punching across all punch types 

fundamental to boxing, and suggest that attempts by coaches and boxers to augment 

these qualities may enhance boxing performance. 

 Whilst previous research has not investigated the associations between 

dynamic lower-body strength and maximal punch fist velocities, the importance of 

isometric lower-body force has been determined in facilitating fist acceleration among 

karatekas (Loturco et al., 2014) and impact force in amateur boxers (Loturco et al., 
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2016). The current very large (jab, rear-hand cross and lead hook) and moderate (rear 

hook, lead and rear uppercuts) relationships between back squat 1RM and peak fist 

velocity (in addition to the moderate-to-perfect associations with normalised back 

squat 1RM) also implicate lower-body strength in the generation of high fist velocities, 

and across all fundamental punch types. This may result from the combination of 

lower-limb kinematics (joint extensions, rotations and angular velocities) and kinetics 

(joint moments, GRF and impulse) that assist in the transmission of forces distally to 

the punching fist via the sequential transfer of momentum (Cabral et al., 2010; 

Cheraghi et al., 2014) during certain punch types. For example, in the case of the rear-

hand cross, peak rear leg GRF (57%) occurs prior to peak angular extension velocities 

of the rear ankle (65%), knee (70%) and hip (72%), whilst peak shoulder (91%) and 

elbow (99%) joint angular velocities occur towards the end of the punching motion 

(Chapter 3). This may also help explain the moderate association between jab and 

lead hook peak elbow angular velocities and back squat 1RM performance, whereby 

the elbow joint facilitates the transmission of kinetic energy/momentum. Indeed, in the 

lead hook for example, peak ankle joint angular extension velocity (66%) and extensor 

moment (76%) assist in generating kinetic energy that is subsequently transferred 

distally via knee (77%) and hip (79%) joint extension velocities before reaching the 

elbow (81%) (Chapter 3). 

Unlike the data relating to lower-body strength, the observed relationships 

between bench press 1RM and peak fist velocities (of the rear-hand cross, lead hook, 

and rear uppercut) are comparable to those of Kim et al. (2018) who reported a 

moderate relationship (r = 0.51) between bench press strength and straight punch 

impact power. This finding also corroborates to some extent the link previously 

established by Loturco et al. (2014), albeit their study reported correlations (r = 0.70-
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0.76) between dynamic upper-body strength and fist acceleration (of rear-hand 

straight punches) among elite karate practitioners. Nonetheless, these findings may 

be due to the influence of muscular strength to force-time characteristics (e.g. rate of 

force development, neuromuscular power) which can be effectively translated to 

dynamic athletic activities (Suchomel et al., 2016). Indeed, the strength of upper-

extremity joints and surrounding musculature are important to the generation of high 

fist velocities (López-Laval et al., 2019; Tasiopoulos et al., 2015; 2018) as the shoulder 

and elbow joints assist in the transference of kinetic energy and momentum generated 

by lower-limb kinematics (ankle, knee and hip joint extension angles and angular 

extension velocities) and kinetics (ankle, knee and hip joint extensor moments) to the 

punching fist during maximal punches (Chapter 3). The implications for enhancing fist 

kinematics via specific upper-body conditioning exercise are a greater likelihood of 

landing clean punches due to a reduction in reaction time afforded to an opponent to 

defend/evade punches, and an increase in the damage potential of punches resulting 

from an increase in impact force (based upon the impulse-momentum relationship 

whereby an increase in fist velocity will yield an increase in momentum (mass x 

velocity)) and subsequently more force being imparted (impulse = force x time) (Turner 

et al., 2011). 

The moderate-to-large positive associations between back squat 1RM and 

peak lead leg GRF for both uppercut punches, in addition to lead leg (net braking and 

vertical - rear-hand cross) and rear leg (net propulsive and vertical - jab and rear hook) 

impulses suggest that boxers with stronger lower-limb musculature are able to 

produce larger lower-limb force (GRF and impulse, lower-limb joint extension angles, 

angular extension velocities and extensor moments), even when normalised to kg 

body mass. Indeed, previous research has reported that high levels of muscular 



   

223 
 

strength augment force-time characteristics across the whole force-velocity curve, and 

that the greater the lower-limb strength possessed by an athlete, the greater the lower-

limb kinetic energy generated (Spiteri, Cochran, Hart, Haff, & Nimphius, 2013; Stone 

et al., 2003; Suchomel et al., 2016). Moreover, lower-limb force is also reported to be 

critical to maximising the performance of dynamic full-body actions wherein the 

kinematics are similar to punching, with the rear leg generating force via ankle, knee 

and hip joint extensions, extension velocities, and extensor moments, and the lead leg 

providing a stable, rigid base that facilitate the transfer of kinetic energy through the 

hips, trunk and upper-limbs (kinetic chain) (via lower-limb joint kinematics and 

moments), to the upper-limbs (Chapter 3; MacWilliams et al. 1998; Matsuo et al., 2001; 

McNally et al., 2015; Terzis, Kyriazis, Karampatsos, & Giorgiadis, 2012; Whiting, 

Gregor, & Halushka, 1991). Indeed, it appears that lower-limb joint extension angles 

in conjunction with angular extension velocities and extensor moments facilitate the 

generation of GRF and impulse via the sequential transfer of energy via the lower-limb 

kinetic chain that is subsequently transmitted through the hips, trunk and upper-limbs 

before being imparted on the target via the fist (Cabral et al, 2010; Chapter 3; Cheraghi 

et al., 2014). This has been evidenced for the rear uppercut in previous research 

whereby peak rear leg joint angular extension velocities (ankle - 59%, knee - 66%, hip 

- 69%) generate kinetic energy/momentum that are transferred to upper limbs (elbow 

– 75%, shoulder – 96%), with the assistance of lead leg extension velocities (ankle - 

72%, knee - 78%, hip - 79%) (Chapter 3). 

Consequently, as previous research has highlighted the importance of lower-

body strength to the end-point impact kinetics of maximal punching (Del Vecchio et 

al., 2017; 2019; Loturco et al., 2014; 2016), the development of a boxer’s lower-limb 

dynamic strength (via RT interventions) will likely strengthen other kinematic and 
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kinetic qualities associated with maximal punching, such as joint velocities, punch 

delivery time and peak GRF. Moderate associations observed between jump squat 

Pmax and peak lead and rear leg GRF for the rear uppercut highlight the relevance of 

lower-limb power to this punch. Indeed, as only trivial-to-small correlations were 

observed between jump squat performance and peak GRF across other punch types, 

it seems plausible that force orientation is a causative feature in this relationship (Morin 

et al., 2011; Plessa et al., 2010). More specifically, as the rear uppercut (which occurs 

predominantly in a vertical trajectory) has been shown to generate larger vertical GRF 

values than straight and hook punches (Chapter 3), an interdependent association 

may exist between jump squat performance (assessment of lower-body vertical force 

production) and peak GRF of rear uppercut punches. This may not be the case for 

other punch types whereby the punching fist acts along the anteroposterior (straights) 

and mediolateral (hooks) axis, respectively, and suggests how the kinetic chain is 

perhaps more prevalent in some punch types than others. 

The observed links between jump squat performance and peak shoulder 

angular velocity (in addition to the timing of peak angular velocity) for the lead hook 

are unique findings that suggest lower-body power influences shoulder joint 

kinematics during this punch. It is likely this occurs as the force generated by the lower-

limbs travels distally through the pelvis, trunk and upper-limbs (i.e. via the kinetic 

chain) to facilitate the high angular joint velocities at the shoulder during a maximal 

punch (Cheraghi et al., 2014). On this basis, it is likely that enhancing a boxer’s lower-

limb Pmax and RFD will increase the angular velocity magnitudes generated at the 

shoulder (and potentially the elbow joint) during lead hook punches, and subsequently, 

the damage potential of this technique. However, the novel finding of a negative 

association between jump squat performance and delivery time across most punch 
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types indicates the importance of lower-body power in the rapid execution of a 

maximal punch. Indeed, it appears that the greater the degree of lower-limb power 

generated at the initiation of a punch, the shorter the time required for the fist to impact 

the intended target. This seems to underpin the importance of lower-limb force-time 

characteristics to the execution of high-velocity punches (James et al., 2016a; 2017), 

with larger lower-limb forces causing a more rapid sequential transfer of energy from 

the ground distally through the hips and trunk to the fist (Bingul et al., 2017; Cheraghi 

et al., 2014; Tong-Iam et al., 2017) via rapid lower-limb joint extensions, extension 

velocities and extensor moments (Chapter 3), resulting in a faster punch delivery time. 

Notwithstanding this likely role of lower-body power, at the upper-body 

(shoulder and elbow) joints the positive associations of the peak angular velocities 

with bench press throw performance (Pmax) in the three lead hand punches (jab, lead 

hook, and lead uppercut) reinforce the importance of the musculature surrounding 

them for generating, storing and then utilising elastic energy (via the SSC) to project 

the fist towards the target (Cheraghi et al., 2014; Piorkowski et al., 2011). It would 

therefore appear beneficial for coaches and boxers to adopt upper-body ballistic 

and/or plyometric exercises (e.g. plyometric push ups, various medicine ball throws, 

resistance band rows) for the purpose of enhancing upper-limb angular joint velocities 

during these three punch types. 

 The finding that peak lead leg GRF was associated with rear hand shot put 

distance for the three rear hand punches (cross, hook, and uppercut) supports 

previous literature advocating the importance of lead leg stiffness (i.e. high joint 

stiffness that minimises knee flexion and the dissipation of GRF) in the transmission 

of force from the lower limbs to the punching arm via the kinetic chain (Chapter 3; 

Cheraghi et al., 2014; Turner et al., 2011). Indeed, a rigid lead leg is typified by large 
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vertical, anteroposterior and mediolateral GRF (resultant GRF when combined) which 

work synergistically to keep the lead leg stable and minimise kinetic energy loss 

(MacWilliams et al., 1998; McNally et al., 2015). Furthermore, during maximal rear 

hand punches (i.e. cross, hook, and uppercut), the lead hip, knee and ankle generate 

smaller peak joint flexion angles (indicative of the lead leg resisting knee flexion and 

being used as an ‘anchor’ to provide isometric stability) (Chapter 3). Such factors are 

imperative to the execution of rear hand punches (Chapter 3) and dynamic full-body 

movements possessing kinematic similarities to rear hand punches, with lead leg GRF 

accounting for ~95% of velocity at the point of release in shot putting (McCoy et al., 

1984) and exhibiting strong relationships with linear wrist velocity at ball release (R2 = 

0.88 - MacWilliams et al., 1998) and throwing arm acceleration (R2 = 0.61 - McNally 

et al., 2015) in baseball pitching. Indeed, these findings highlight the importance of the 

lower-body, particularly the lead leg, in providing a stable base from which to generate 

force proximally to the upper limbs during ballistic full-body movements. Therefore, in 

addition to technical practice, boxers may benefit from the addition of specific training 

that emphasises force production and stability of the lead leg in their preferred boxing 

stance (orthodox or southpaw) as a means of enhancing rear hand punch peak fist 

velocities. 

 The extent of the associations (moderate to large) between sprinting speed 

(over 10 and 20 m) and peak rear leg GRF for the rear hand punches is interesting 

given that sprinting involves both lower- and upper-body actions. While the rear leg 

exerts larger peak forces compared to the lead leg during a sprint start in order to 

propel the centre of mass forward (Harland & Steele, 1997; Majumdar & Robergs, 

2011; Mero, Kuitunen, Harland, Kyrolainen, & Komi, 2006), the upper-body has been 

shown to contribute as much as 22% of the body’s kinetic energy during a sprint start, 
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which assists velocity through increased propulsion in the direction of movement 

(Macadam, Cronin, Uthoff, Johnston, & Knicker, 2018; Slawinski et al., 2010). Such 

overall movement speed will be a ‘performance’ asset owing to the limited time-frame 

in which a boxer has to execute offensive and defensive strategies (Chang et al., 2011; 

James, Kelly, & Beckman, 2014). Indeed, indirectly in other combat sports, short-

distance sprint performance (≤ 30 m) has been shown to be an important pre-requisite 

to the execution of techniques among successful judokas, karatekas and taekwondo 

practitioners (Tabben et al., 2014). Moreover, for movements with similar kinematics 

to the rear hand cross (baseball pitching), large correlations have also been reported 

between 10 m sprint times and pitch ball ‘potential energy’ (Nakata, Nagami, Higuchi, 

Sakamoto, & Kanosue, 2013).  

More specific perhaps (with respect to the current rear leg GRF correlations), 

is the strong link reported between single leg power and short-distance (10-30 m) 

sprinting performance (Chaouachi et al., 2009; Chelly & Denis, 2001; Lockie, Jalilvand, 

Callaghan, Jeffriess, & Murphy, 2015). Indeed, velocity at the start of a sprint following 

the initial ground contact is significantly correlated with rear leg anteroposterior (r = 

0.62-0.71) and vertical GRF (r = 0.41-0.50) (Mero, 1988). This is suggested to relate 

to an athlete’s lower-limb RFD characteristics and concentric muscular power 

capabilities (Young, Mclean, & Ardagna, 1995), alongside their musculotendinous 

stiffness during ground contacts which enable an efficient application of GRF (Murphy 

et al., 2003). Though there is presently a dearth of research concerning the association 

between movement speed and biomechanical markers of maximal punching, the 

current findings suggest that as movement speed influences the GRFs exerted during 

rear hand punches, attempts to improve a boxer’s short-distance speed via resisted 

sprint drills (with  12-43 % body mass (%BM) as added load;  Petrakos, Morin, & Egan, 
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2006) and plyometrics that emphasise single leg horizontal force production (e.g. 

single leg broad jumps and bounds; Behrens & Simonson, 2011) and stiffness (e.g. 

single leg depth jump landings) are likely to yield larger rear leg peak GRFs and 

subsequently, greater fist velocities and potentially impact forces (Loturco et al., 2016). 

 

5.4.1. Conclusion 

This study has established specific physical performance-related qualities are 

meaningful determinants of the resultant forces and movements occurring during six 

fundamental punch types among amateur boxers. In particular, (i) upper- and lower-

body strength influences peak fist velocity across numerous punch types, (ii) upper-

body power is associated with shoulder and elbow joint angular velocities across all 

lead hand punches and lower-body power with rear uppercut peak lead and rear GRF, 

(iii) rear hand medicine ball shot put distance is related to peak lead leg GRF of all 

rear hand punch types and (iv) peak rear leg GRF of all rear hand punches is 

associated with 10 m and 20 m sprint speed. As the physical qualities assessed within 

the current study may be augmented through the implementation of specific RT 

interventions, future research should investigate the influence of such interventions 

upon maximal punching biomechanics, with the intention of developing 

comprehensive boxing- and punch-specific strength and conditioning strategies. 
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The effects of different resistance training interventions on 

maximal punch kinetics and kinematics, and performance-related 

measures among amateur boxers. 
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The purpose of this study was to quantify the effects of two resistance training 

interventions on measures of muscular strength, power, and three-dimensional (3D) 

kinetics and kinematics of six punching techniques characteristic of boxing. Fifteen 

male boxers (age: 27.5 ± 3.4 years, stature: 179 ± 5.5 cm; body mass: 80.1 ± 5.8 kg; 

years of experience: 9.3 ± 2.3 years) were randomly assigned to either Strength (ST), 

Contrast (CT) or control (C) groups, with ST and CT performing twice-weekly 

resistance training sessions over six weeks alongside their regular boxing practice. 

The C group completed boxing practice only across the same period. All groups 

performed maximal effort punches against a suspended punch bag during which 

upper-body kinematics and lower-body kinetics were assessed via 3D motion capture 

system and two embedded force plates, and physical assessments (back squat 1RM, 

bench press 1RM, hexagonal-bar deadlift 1RM, jump squat (bodyweight), bench throw 

(30% bench press 1RM), med-ball shot put (4 kg)) at baseline and post-intervention. 

Analysis revealed significant ‘time’ and ‘time by group’ effects (P < 0.05) for all kinetic 

(peak lead and rear leg GRF, total lead and rear leg impulse) and kinematic variables 

(delivery time, peak fist velocity, and angular shoulder and elbow joint velocities) 

across all punch types for both training groups, with CT demonstrating larger pre-to-

post performance increases compared to ST (d = 0.2-1.7). Strength performance 

across all 1RM tests increased moderately from baseline for both training groups (P < 

0.05, d = 0.4-1.1), as did jump squat and bench throw maximal power (P < 0.05, d = 

0.5–0.8), with CT exhibiting larger improvements compared to ST (d = 0.3-0.9). Lead 

and rear hand shot put incurred small-to-moderate improvements from pre-to-post (P 

< 0.05) in both CT (d = 0.5-0.8) and ST (d = 0.4) groups. C group did not exhibit any 

significant changes for any biomechanical, biometric, or physical performance variable 

from baseline measures. These findings highlight the positive effects of resistance 

training, especially a CT intervention, upon maximal punching performance, and 

support its inclusion within boxers’ current training practices. 

 

Key words: punching, boxing, contrast training, strength training, biomechanics, GRF, 

velocity. 

Having quantified the importance of certain kinetic and kinematic variables to maximal 

punching performance (Chapter 3), and the MV associated with these measures 
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(Chapter 4), research to identify the effects of different RT interventions upon these 

important variables was justified. Indeed, following the quantification of the 

associations between maximal punching kinetics and kinematics and measures of 

muscular strength, power, and speed (Chapter 5), the final study of this thesis 

investigates how different RT programmes affect biomechanical variables associated 

with maximal punching, and the physical performance-related qualities that influence 

it. 

 

6.1. Introduction 

RT is a popular form of exercise that has been shown to augment numerous physical 

and physiological traits, including muscular strength, power, speed, acceleration, 

hypertrophy, endurance, balance, and coordination (Kraemer & Ratamess, 2004), and 

subsequently contribute to athletic performance (Suchomel et al., 2016). However, 

boxing at both amateur and professional levels has typically avoided RT methods, as 

its coaches and boxers have favoured ‘time-honoured’ methods, such as high 

repetition bodyweight/callisthenic exercises alongside technical practice and repeated 

bouts of aerobic-based training (often to assist with ‘making weight’ - Bourne et al., 

2002; Del Vecchio, 2011; Turner, 2009). This reluctance originates from fears of 

impairments owing to increased body mass, decreased aerobic capacity, impaired 

punching velocity and excessive muscle mass (Del Vecchio, 2011; Ebben & 

Blackhard, 1997). Yet, research has established when performed consistently with 

appropriate loads, RT can facilitate notable improvements in the biomechanical and 

physical performance-related characteristics underpinning maximal punching 
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(Čepulėnas et al., 2011; Del Vecchio et al., 2017; 2019; Hlavačka, 2014; Kim et al., 

2018; Markovic et al., 2016; Loturco et al., 2018; Piorkowski et al., 2011). 

 Čepulėnas et al. (2011) documented how straight punch impact force increased 

by 44% (jab) and 17% (rear-hand cross) among experienced boxers following a 4-

week intervention, while 25-51% (Del Vecchio et al., 2017), 21.4% (Del Vecchio et al., 

2019), ~6% (Hlavačka, 2014) and ~27% (Kim et al., 2018) increases in impact power 

have been reported in straight and hook punches following six-week, nine-week, and 

sixteen-week RT programmes, respectively. However, no research has yet addressed 

the effects of RT on the lower-body kinetics (GRFs and impulses) of maximal 

punching, and only one study has considered its impact upon punch kinematics 

(Markovic et al., 2016), where increases of 6-11% in jab fist velocity were observed 

following six-weeks of resistance band training. Given this lack of empirical evidence 

for the merits of RT on the kinetics and kinematics of all punches fundamental to 

boxing performance, any attempts to advise coaches and boxers on RT methods 

would seem incomplete.  

Accepting that RT programmes enhance punching performance, identifying the 

most effective modality for accomplishing this is worthwhile. In non-boxing related 

research, following on from the established relationships between upper-limb velocity 

and muscular strength and power measures (Chelly, Hermassi, & Shephard, 2010), 

both strength (loads ≥ 80% 1RM) and power (loads ≤ 60% 1RM) resistance exercises 

have been shown to enhance sporting movements possessing kinematic similarities 

to punching (Hermassi, Chelly, Tabka, Shephard, & Chamari, 2011; Jones et al., 2013; 

Prokopy et al., 2013; Zaras et al., 2013). More specifically, ST (high load (≥ 80% 1RM) 

resistance exercises performed on a set-by set basis) have been documented to 

improve muscular strength and power (Frost, Bronson, Cronin, & Newton, 2016; 
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Gorostiaga, Granados, Ibanez, & Izquierdo, 2005; Hammami et al., 2017; Suchomel 

et al., 2016; Zaras et al., 2013) across a number of athletic populations, resulting from 

augmented neural and mechanical adaptations (Suchomel et al., 2018). Such 

adaptations include increases in musculotendinous stiffness, motor-unit recruitment 

and synchronisation, and neural stimulation (Cormie et al., 2011a; Rodríguez-Rosell, 

Torres-Torrelo, Franco-Márquez, González-Suárez, & González-Badillo, 2019; 

Suchomel et al., 2016; 2018). In addition, CT (alternated strength and power 

resistance exercises performed on a set-by-set basis) has been reported to improve 

measures of muscular strength (Bauer et al., 2019; Fatouros et al., 2000; Rajamohan, 

Kanagasabai, Krishnaswamy, & Balakrishnan, 2010), muscular power (Alves et al., 

2010; Argus, Gill, Keogh, McGuigan, & Hopkins, 2012; de Villarreal et al., 2011; 

Hammami et al., 2017), and speed (Bauer et al., 2019; Kobal et al., 2017) more than 

strength or power training performed in isolation, or other RT methods (such as OL, 

BT, and PT; de Villarreal et al., 2013). Moreover, CT interventions have also been 

reported to augment sport-specific joint and movement velocities compared to 

traditional strength-based RT (Hasan, Nuhmani, Kachanathu, & Muaidi, 2018; 

Hermassi et al., 2011; Ramos Veliz, Requena, Suarez-Arrones, Newton, & de 

Villarreal, E., 2014). It has been argued that such an advantage exists due to the 

greater high threshold motor-unit availability (Seitz, de Villarreal, & Haff, 2014; Tillin & 

Bishop, 2009), increased α-motor neuron excitability (Guillich & Schmidtbleicher, 

1996; Trimble & Harp, 1998) and actin-myosin binding rates (Rassier & Macintosh, 

2000) that occur following CT. Such neural adaptations are reported to enhance motor 

skills along the whole force-velocity curve that facilitate optimal training conditions for 

muscular strength augmentation (Hammani et al., 2017; Rajamohan et al., 2010), 

neuromuscular power adaptations (Freitas et al., 2017; Spineti et al., 2016) and 
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improvement of force-time characteristics (Granacher et al., 2016; Suchomel et al., 

2016; 2018). 

Recognising which RT methods are most effective in improving the 

biomechanical and physical performance-related characteristics of maximal punching 

is desirable to prepare boxers for the demands of competition and to optimise contest 

preparation (Chaabene et al., 2015; Loturco et al., 2016; Piorkowski et al., 2011). 

Accordingly, the aim of this study was to quantify the effects of ST and CT programmes 

(relative to a control condition) on the ground reaction forces (GRF) and kinematic 

characteristics of a variety of maximal punches among amateur boxers. It was 

hypothesised that both training programmes would enhance key biomechanical 

variables of maximal punching, and that CT would incur larger punch performance 

increases. 

 

6.2. Methods 

6.2.1. Participants 

Fifteen males across four weight categories (welterweight (64-69 kg) to heavyweight 

(81-91 kg)) were recruited from four amateur boxing clubs located across the North 

West of England, based upon current boxing experience (≥ 2 years) and official bout 

history (≥ 2 bouts - Table 6.1). A sample size calculation (G*Power version 3.1.9, 

Universität Düsseldorf, Dusseldorf, Germany - Faul et al., 2009) based on standard 

input parameters (α = 0.05, power = 0.8) and effect size = 0.7 for punch kinetics 

improvements (gleaned from previous research; Del Vecchio et al., 2019), generated 

a total sample of nine. All participants provided written informed consent prior to the 
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study and institutional ethical approval was granted by the Faculty of Medicine, 

Dentistry and Life Sciences Research Ethics Committee. 

 

Table 6.1. Biometric and boxing experience characteristics of participants (mean ± 
SD) 

Group* 
Age  
(yrs) 

Stature  
(cm) 

Body mass 
pre (kg) 

Body mass 
post (kg)  

Experience 
(y) 

Control (C) 
(n = 5) 

29.6 ± 3.4 179.2 ± 6.2 80.4 ± 5.6 80.6 ± 5.4 10 ± 3.2 

Strength training 
(ST) (n = 5) 

25 ± 3.1 178.0 ± 5.7 78.9 ± 7.7 79.5 ± 7.6 8.4 ± 1.5 

Contrast training 
(CT) (n = 5) 

28 ± 2.6 179.8 ± 5.7 81.1 ± 4.8 81.7 ± 5.2 9.4 ± 1.8 

All groups 
(n = 15) 

27.5 ± 3.4 179 ± 5.5 80.1 ± 5.8 80.6 ± 5.8 9.3 ± 2.3 

*Mean differences between groups were not significantly different (P > 0.05) 
 

 

6.2.2. Design 

The study adopted a mixed factorial (‘group’ x ‘time’) design in which boxers were 

randomly allocated to one of three groups (control (C), strength training (ST), and 

contrast training (CT)). The C group had biomechanical and physical performance-

related variables recorded at baseline (week 0) and 7-weeks later and completed no 

RT (in the form of resistance exercises with external loads (such as free weights)) 

between baseline and post-intervention measurements. Meanwhile, ST and CT 

groups completed the same assessments at the same time-points before and after the 

6-week RT intervention period (see Figure 6.1). Familiarisation sessions were 

completed to establish that the boxers could all perform the required assessments. 
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The C group completed their regular boxing skill and cardiovascular training during the 

six-week period, while ST and CT groups performed their intervention sessions in 

place of one regular boxing session and one cardiovascular/endurance training 

session (which all boxers consistently completed as part of their regular weekly 

training regimens) each week. No boxers were actively competing (i.e. had a 

competitive bout scheduled) during the 6-week intervention period. All biomechanical 

measurements were recorded within the University of Chester’s Biomechanics 

Laboratory, while all physical performance-related measures were quantified in the 

Strength and Conditioning Laboratory (Figure 6.1). The dependent variables included 

10 biomechanical (four kinematic and six kinetic variables for each of the six punch 

types) and seven physical performance-related variables (three muscular strength and 

four muscular power).  

 

6.2.3. Procedures 

The first pre-intervention session comprised the biomechanical assessments of six 

maximal punches (jab, rear-hand cross, lead hook, rear hook, lead uppercut, and rear 

uppercut). The peak values for punch delivery time, fist velocity, shoulder and elbow 

angular joint velocities, and GRF (lead and rear leg), in addition to average total 

impulse (lead leg braking and vertical, rear leg propulsive and vertical) were quantified 

for each punch type pre and post-intervention. The full biomechanical assessment 

procedure is described in Chapter 3.  

The second testing session comprised various physical assessments to 

quantify muscular strength and muscular power. Muscular strength was quantified via 

1RM tests for the upper-body (bench press (BP)), lower-body (back squat (BS)) and 
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full-body (hexagonal bar deadlift (HBD)). Meanwhile muscular power was measured 

via bench throws (with 30% bench press 1RM), jump squats (bodyweight), and lead 

and rear hand shot puts (with 4kg med-ball). A full description of the physical 

performance-related testing procedures and assessment protocols can be observed 

in Chapter 5. 

 Following the baseline biomechanical and physical performance-related 

assessments, participants were randomly assigned into control (C, n = 5), strength 

training (ST, n = 5), and contrast training (CT, n = 5) groups. Both ST and CT groups 

performed twice weekly RT sessions a minimum of 48 hours apart across a six-week 

period. Each session lasted approximately 80 minutes (including warm up and cool 

down) and replaced two of the participant’s regular weekly training sessions 

(resistance, cardiovascular or boxing training). Meanwhile, the C group completed its 

regular boxing training routine across the same six-week timeframe and were asked 

to refrain from completing any form of RT outside of commonplace boxing conditioning 

exercises (e.g. bodyweight push ups, sit ups etc.) during this period. 

The ST intervention programme consisted of three resistance exercises per 

session performed with initial loads of 85% 1RM which were gradually increased over 

the duration of the intervention (Table 6.2). Meanwhile, the CT group completed six 

exercises per session, comprising three ‘strength’ (≥ 80% 1RM) and three ‘power’ 

(bodyweight, band-resisted, or light external load) exercises, respectively (Table 6.3).  

Training volume was standardised across both ST and CT groups, wherein they 

completed a total of four sets per exercise/movement pattern in each session. The ST 

group performed four sets of each exercise (e.g. back squat), while the CT group 

performed two sets each of strength (e.g. back squat) and power-based (e.g. jump 
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squat) exercises (four sets total), performed in an alternated sequence (i.e. back 

squat, jump squat, back squat, jump squat). If a boxer could complete more repetitions 

than the stipulated repetition range (see Tables 6.3 and 6.4) for a given exercise at a 

given load, additional load was added (upper-body exercises = 2-4 kg, lower-body 

exercises = 7-9 kg; McGuigan, 2016) until no more than the stated number of 

repetitions could be completed.  

The exercise selection and ‘workload’ of each RT intervention (i.e. the ratio of 

lower- to upper- body exercises) were selected based upon their likelihood of high 

adherence (i.e. boxers could perform the exercises at a range of locations such as 

gyms or boxing clubs (if possessing RT equipment)), their relevance to physical-

performance assessments (pre- and post-intervention) and potential at enhancing 

muscular strength (ST and CT) and power qualities (CT). Lower-body exercises were 

emphasised to a larger degree than upper-body exercises due to associations 

between lower-body muscular strength and numerous maximal punch kinetic and 

kinematic variables (Chapter 5). Though the CT group performed a more diverse 

range of exercises (four upper-body, eight lower-body) than the ST group (two upper-

body, four lower-body), total volume was equated/standardised for each movement 

pattern. Furthermore, training diaries completed over the six-week intervention period 

suggest boxers performed additional cardiovascular training, circuit training and 

boxing-specific conditioning sessions alongside the intervention programme (in the 

case of ST and CT boxes), likely in attempts to maintain their endurance and fighting 

weight (Bourne et al., 2002; Del Vecchio, 2011). Though boxers were instructed to 

remove one regular boxing skill/technical session and one cardiovascular/endurance 

training session each week in order to accommodate for the twice-weekly intervention 

session, the diversity of each boxer’s daily routines and training times (i.e. morning or 
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evening) meant that this was not always fulfilled. The Control group completed an 

average of five ‘endurance-based’ sessions, four boxing sessions and three ‘circuit 

training’ sessions per week over the 6-week intervention period. The ST completed an 

average of two ‘endurance-based’, three boxing and one ‘circuit training’ sessions per 

week, while the CT completed an average of one (endurance), three (boxing) and two 

(circuit) sessions weekly. Based upon training diaries provided, endurance-based 

session were often completed in the morning (by all groups) while boxing sessions (all 

groups) and intervention session (ST and CT groups) were performed during 

evenings. Circuit training session were commonly performed at the end of either 

endurance-based or boxing training sessions. 

One-week following the training interventions, the baseline assessments were 

repeated in order to quantify the influence of the ST and CT training programmes on 

maximal punching kinetics and kinematics, and maximal muscular strength and peak 

muscular power. For both ST and CT groups, the overall adherence rate to training 

(calculated as a percentage of RT sessions completed successfully), was 100% (12 

out of 12 sessions) across the six-week intervention period. 

 

6.2.4. Data processing 

Kinematic and GRF data were analysed via Qualisys Track Manager (QTM) 

(version 2.14, Qualisys Inc., Gothenburg, Sweden), whereby reflective markers and 

anatomical landmarks were labelled. Punch trials were exported to Visual 3D (Version 

6, C-Motion Inc., Rockville, United States) from which full-body joint segments and key 

events were created. From this, upper-limb kinematic and lower-limb GRF and impulse 

data were calculated. Key events were categorised as: (i) INITIATION and (ii) 
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CONTACT (see Chapter 3 for a comprehensive description of data processing 

information). 

 

6.2.5. Statistical analysis 

Descriptive statistics (mean ± SD) were generated for all dependent variables and 

their distributions checked for normality and equal variance via Shapiro-Wilk and 

Levene tests, respectively, utilising IBM SPSS (version 25, Chicago, USA). As these 

conditions were met, 2-way (group x time) repeated measures analysis of variance 

(ANOVA) tests were used to compare mean differences between groups (ST, CT, and 

C), and across the intervention period (pre and post), with Bonferroni-adjusted t-tests 

adopted as a post-hoc procedure to identify where specific differences existed. A 

repeated measures analysis of covariance (ANCOVA) was also used to control for 

baseline mean muscular strength differences between groups (ST, CT, and C), and 

across the intervention period (pre and post). Cohen’s d effect sizes and 95% 

confidence intervals were used to quantify pair-wise comparisons and calculated as: 

d = (�̅�1- �̅�2) / SD; where �̅�1 and �̅�2 represent the two sample means and SD the pooled 

standard deviation. The magnitude of Cohen’s d effect sizes were classified as: trivial 

< 0.2, small 0.2-0.6, moderate 0.6-1.2, large 1.2-2.0, and very large > 2.0 (Hopkins, 

2004). Additionally, the SWC% was calculated from each group’s baseline measures 

to establish the minimum change required to identify ‘genuine’ differences in 

performance (Currell & Jeukendreup, 1998) using Cohen’s (1988) standardised d (0.2 

x pooled standard deviation); ‘moderate’ (MWC%) and ‘large’ (LWC%) changes were 

also calculated using three (0.6) and six (1.2) times the SWC% (Batterham & Hopkins, 

2006; Hopkins, 2004; Waldron et al., 2013). 
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Figure 6.1. Schematic of study design. 
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Table 6.2. Strength training (ST) group resistance training programme 
 

Period Weekly session Exercise Repetitions Sets Load 
Rest 

period 

Weeks  
1 & 2 

Session 1 

1. Back squat 4-5 4 85% back squat 1RM 

3-5 
minutes 
between 

sets 

2. Barbell row 4-5 4 85% bench press 1RM 

3. Hip thrust 4-5 4 85% HBD 1RM 

     

Session 2 

1. HBD 4-5 4 85% HBD 1RM 

2. Bench press 4-5 4 85% bench press 1RM 

3. Barbell split squat 4-5 (per leg) 4 Maximum of 5 repetitions 

Weeks  
3 & 4 

Session 1 

1. Back squat 3-4 4 87.5% back squat 1RM 

3-5 
minutes 
between 

sets 

2. Barbell row 3-4 4 87.5% bench press 1RM 

3. Hip thrust 3-4 4 87.5% HBD 1RM 

     

Session 2 

1. HBD 3-4 4 87.5% HBD 1RM 

2. Bench press 3-4 4 87.5% bench press 1RM 

3. Barbell split squat 3-4 (per leg) 4 Maximum of 4 repetitions 

Weeks  
5 & 6 

Session 1 

1. Back squat 2-3 4 90% back squat 1RM 

3-5 
minutes 
between 

sets 

2. Barbell row 2-3 4 90% bench press 1RM 

3. Hip thrust 2-3 4 90% HBD 1RM 

     

Session 2 

1. HBD 2-3 4 90% HBD 1RM 

2. Bench press 2-3 4 90% bench press 1RM 

3. Barbell split squat 2-3 (per leg) 4 Maximum of 3 repetitions 

 
HBD = hexagonal bar deadlift 

 



   

244 
 

Table 6.3. Contrast training (CT) group resistance training programme 
 

Period 
Weekly 
session 

Exercise Repetitions Sets Load Rest period 

Weeks  
1 & 2 

Session 1 

1a.  Back squat 
1b.  CMJ 

2-3 
2-3 

2 
2 

85% back squat 1RM 
Bodyweight 

3-5 minutes 
between sets 

2a.  Barbell row 
2b.  Med-ball slam 

2-3 
2-3 

2 
2 

85% bench press 1RM 
3kg med-ball 

3a.  Hip thrust 
3b.  Band-resisted broad jump 

2-3 
2-3 

2 
2 

85% HBD 1RM 
Bodyweight + ‘medium’ resistance band (11-36 kg of resistance) 

      

Session 2 

1a.  HBD 
1b.  Squat jump 

2-3 
2-3 

2 
2 

85% HBD 1RM 
Bodyweight 

3-5 minutes 
between sets 

2a.  Bench press 
2b.  ~30° incline ballistic push-up 

2-3 
2-3 

2 
2 

85% bench press 1RM 
Bodyweight 

3a.  Barbell split squat 
3b.  Split squat jump 

2-3 (per leg) 
2-3 (per leg) 

2 
2 

Maximum of 3 repetitions  
Bodyweight 

Weeks  
3 & 4 

Session 1 

1a.  Back squat 
1b.  CMJ 

2-3 
2-3 

2 
2 

87.5% back squat 1RM 
Bodyweight + external load equal to 5% body mass 

3-5 minutes 
between sets 

2a.  Barbell row 
2b.  Med-ball slam 

2-3 
2-3 

2 
2 

87.5% bench press 1RM  
4 kg med-ball 

3a.  Hip thrust 
3b.  Band-resisted broad jump 

2-3 
2-3 

2 
2 

87.5% HBD 1RM 
Bodyweight + ‘medium’ resistance band (11-36 kg of resistance) 

      

Session 2 

1a.  HBD 
1b.  Squat jump 

2-3 
2-3 

2 
2 

87.5% HBD 1RM 
Bodyweight + external load equal to 5% body mass 

3-5 minutes 
between sets 

2a.  Bench press 
2b.  ~15° incline ballistic push-up 

2-3 
2-3 

2 
2 

87.5% bench press 1RM 
Bodyweight 

3a.  Barbell split squat 
3b.  Split squat jump 

2-3 (per leg) 
2-3 (per leg) 

2 
2 

Maximum of 3 repetitions  
Bodyweight + external load equal to 5% body mass 

Weeks  
5 & 6 

Session 1 

1a.  Back squat 
1b.  CMJ 

2-3 
2-3 

2 
2 

90% back squat 1RM 
Bodyweight + external load equal to 10% body mass 

3-5 minutes 
between sets 

2a.  Barbell row 
2a.  Med-ball slam 

2-3 
2-3 

2 
2 

90% bench press 1RM  
5 kg med-ball 

3a.  Hip thrust 
3b.  Band-resisted broad jump 

2-3 
2-3 

2 
2 

90% HBD 1RM 
Bodyweight + ‘medium’ resistance band (11-36 kg of resistance) 

      

Session 2 

1a.  HBD 
1b.  Squat jump 

2-3 
2-3 

2 
2 

90% HBD 1RM 
Bodyweight + external load equal to 10% body mass 

3-5 minutes 
between sets 

2a.  Bench press 
2b.  Ballistic push-up 

2-3 
2-3 

2 
2 

90% bench press 1RM 
Bodyweight 

3a.  Barbell split squat 
3b.  Split jump squat 

2-3 (per leg) 
2-3 (per leg) 

2 
2 

Maximum of 3 repetitions  
Bodyweight + external load equal to 10% body mass 

 

HBD = hexagonal-bar deadlift, CMJ = countermovement jump 
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6.3. Results 

6.3.1. Punch kinematics 

Both CT (P < 0.001, d = 0.5-1.8, 10.4-54.6%) and ST (P < 0.001, d = 0.5-1.7, 7.2-

40.9%) groups exhibited moderate-to-large performance increases from pre-to-post 

across all kinematic variables, while trivial-to-moderate improvements (P = 0.082-

0.866, d = 0.1-0.5, 0.3-7.3%) were noted for C group (see Tables 6.4-6.6). Post-

intervention differences for punch delivery time were trivial-to-moderate for all group 

comparisons (P < 0.001, d = 0.01-0.8). For the other kinematic variables, large 

differences were noted between CT and C groups (P < 0.001-0.016, d = 1.4-1.8), 

small-to-large differences between ST and C groups (P = 0.001-1.000, d = 0.3-1.7), 

and moderate-to-large differences between CT and ST groups (P = 0.011-0.589, d = 

0.6-1.6), respectively. As an example, the pre to post individual changes in rear-hand 

cross peak fist velocity across all groups can be observed in Figure 6.2. 

 

6.3.2. Punch kinetics 

For the six kinetic variables, pre-to-post intervention performance changes were 

moderate-to-large for CT (P < 0.001-0.032, d = 0.9–1.9, 14.3-146.1%) and ST groups 

(P < 0.001-0.395, d = 0.6–1.8, 11.3-72.3%). Meanwhile, C group exhibited trivial-to-

moderate changes (P = 0.133-0.880, d = 0.03–0.9, 2.2-40.5%) across the majority of 

variables (Tables 6.4-6.6), but demonstrated large performance increases for peak 

lead leg GRF across rear-hand cross, lead hook, and rear uppercut punches (P = 

0.033-0.375, d = 1.2-1.5, 14.4-19%) (Appendix 5). 
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Figure 6.2. Individual percentage changes in peak fist velocity in response to control (C), strength training (ST) and contrast 
training (CT) interventions. Horizontal line represents the average smallest worthwhile change percentage (SWC%) for baseline 
rear-hand cross values across all groups. 
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6.3.3. Physical performance-related variables and body mass 

Both CT (P < 0.001, d = 0.5-1.1, 18.8-22.4%) and ST (P < 0.001, d = 0.4-1.1, 8.8-

15.8%) groups exhibited small-to-large performance improvements from pre-to-post 

across all strength and power measures. Meanwhile, C group exhibited trivial-to-small 

performance changes from baseline (P = 0.103-1.000, d = 0.004-0.2, 0.04-1.9%). 

Post-intervention differences between CT and C groups were moderate-to-large (P = 

0.004-0.768, d = 0.8-1.4) across the majority of performance tests, as were those 

between ST and C groups (P = 0.067-1.000, d = 0.5-1.3), while CT and ST differences 

were small-to-moderate (P = 0.311-1.000, d = 0.2-0.8), respectively. 

A significant group effect (P < 0.001, F = 34.0-153.4) was observed for all post-

intervention muscular strength measures having controlled for baseline differences, 

with post-hoc differences also significant between CT and C (P < 0.001), ST and C (P 

< 0.001), and CT and ST (P < 0.001–0.010) groups, respectively. 

From pre-to-post intervention, all groups exhibited trivial body mass increases 

(P < 0.001-0.218, d = 0.03-0.14, 0.2-0.9%), while group differences post-intervention 

were small (P = 1.00, d = 0.2-0.4 - Table 6.7). 
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Table 6.4. Control group kinematic and kinetic variable values across punch types from pre-to-post-intervention 
 

 
Jab Rear-hand cross Lead hook Rear hook Lead uppercut Rear uppercut 

Pre Post  Pre Post  Pre Post  Pre Post  Pre Post  Pre Post  

Punch delivery 
time (ms) 

295 ±  
31.3 

294 ±  
29.1 

363 ±  
45.0 

364 ±  
42.8 

589 ±  
85.7 

583 ±  
86.5 

575 ±  
72.3 

573 ±  
70.2 

616 ±  
75.7 

610 ±  
76.9 

650 ±  
81.8 

644 ±  
82.8 

Peak fist velocity 
(m/s) 

5.33 ± 
0.33 

5.36 ± 
0.32 

5.72 ± 
0.48 

5.79 ± 
0.47 

9.56 ± 
0.62 

9.61 ± 
0.63 

9.14 ± 
0.86 

9.21 ± 
0.87 

8.28 ± 
0.69 

8.34 ± 
0.66 

9.32 ± 
1.38 

9.36 ±  
1.3 

Peak shoulder 
joint angular 
velocity (deg/s) 

548.96 ± 
63.84  

557.41 ± 
620.2 

474.81 ± 
44.26  

509.60 ± 
91.61  

667.77 ± 
91.64  

675.46 ± 
100.99 

680.98 ± 
109.84  

701.81 ± 
91.33 

863.61 ± 
132.97  

879.34 ± 
134.67 

933.34 ± 
95.99 

948.35 ± 
100.87 

Peak elbow joint 
angular velocity 
(deg/s) 

534.10 ± 
79.61 

546.78 ± 
82.33 

266.29 ± 
90.98 

277.33 ± 
96.45 

401.91 ± 
83.76 

417.19 ± 
81.02 

406.98 ± 
97.43 

420.45 ± 
103.65 

400.92 ± 
62.19 

416.65 ± 
64.83 

421.11 ± 
65.38 

429.58 ± 
66.46 

Peak lead leg 
GRF (N/kg) 

0.40 ± 
0.12 

0.38 ± 
0.12 

0.51 ± 
0.08 

0.60 ± 
0.11* 

0.71 ± 
0.05 

0.81 ± 
0.07* 

0.78 ± 
0.09 

0.80 ± 
0.12 

0.73 ± 
0.21 

0.78 ± 
0.12 

0.84 ± 
0.13 

0.96 ± 
0.06* 

Peak rear leg 
GRF (N/kg) 

0.96 ± 
0.17 

1.01 ± 
0.15 

0.87 ± 
0.16 

0.80 ± 
0.05 

0.82 ± 
0.19 

0.80 ± 
0.14 

0.78 ± 
0.17 

0.81 ± 
0.14 

0.93 ± 
0.17 

0.97 ± 
0.15 

0.73 ± 
0.05 

0.75 ± 
0.12 

Total lead leg net 
braking impulse 
(N/s/kg) 

-0.80 ± 
0.74 

-0.89 ± 
1.47 

-2.98 ± 
1.23 

-2.98 ± 
1.31 

-4.50 ± 
2.75 

-5.78 ± 
4.43 

-10.45 ± 
3.77 

-10.92 ± 
4.42 

-7.80 ± 
4.07 

-8.30 ± 
6.57 

-11.59 ± 
3.54 

-9.43 ± 
1.79 

Total lead leg 
vertical impulse 
(N/s/kg) 

14.63 ± 
6.71 

9.14 ± 
5.77 

17.91 ± 
4.88 

19.77 ± 
4.99 

87.64 ± 
35.93 

123.12 ± 
54.46 

78.69 ± 
34.26 

100.75 ± 
53.90 

94.17 ± 
42.74 

126.90 ± 
44.61 

108.50 ± 
60.31 

100.12 ± 
35.01 

Total rear leg net 
propulsive 
impulse (N/s/kg) 

2.61 ± 
0.71 

1.97 ± 
1.20 

5.04 ± 
1.81 

4.90 ± 
1.71 

7.56 ± 
2.98 

6.50 ± 
4.56 

13.88 ± 
3.51 

13.05 ± 
2.99 

10.68 ± 
4.28 

9.20 ± 
5.08 

15.24 ± 
4.60 

11.64 ± 
1.65 

Total rear leg 
vertical impulse 
(N/s/kg) 

38.85 ± 
12.43 

26.36 ± 
6.58 

42.52 ± 
14.57 

37.86 ± 
11.05 

114.85 ± 
42.0 

107.80 ± 
46.55 

122.85 ± 
42.89 

117.40 ± 
49.73 

121.68 ± 
38.38 

114.21 ± 
34.79 

135.67 ± 
59.48 

101.77 ± 
22.78 

 
*denotes significantly different from pre-intervention value at Bonferroni-adjusted P level. 
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Table 6.5. Strength training group kinematic and kinetic variable values across punch types from pre-to-post-intervention 
 

 
Jab Rear-hand cross Lead hook Rear hook Lead uppercut Rear uppercut 

Pre Post  Pre Post  Pre Post  Pre Post  Pre Post  Pre Post  

Punch delivery 
time (ms) 

386 ±  
76.2 

347 ±  
85.3* 

468 ±  
83.5 

421 ±  
89.3* 

638 ±  
87.8 

589 ±  
87.4* 

623 ±  
71.8 

574 ±  
74.8* 

690 ±  
35.6 

634 ±  
37.2* 

617 ±  
14.6 

573 ±  
19.5* 

Peak fist velocity 
(m/s) 

5.58 ± 
0.31 

5.97 ± 
0.33*C 

6.01 ± 
0.54 

6.69 ± 
0.38* 

10.00 ± 
0.33 

11.29 ± 
0.55*C,CT 

9.39 ± 
0.49 

10.46 ± 
0.42*CT 

9.41 ± 
1.54 

10.61 ± 
1.39*C 

10.02 ± 
0.94 

11.30 ± 
1.35* 

Peak shoulder 
joint angular 
velocity (deg/s) 

587.91 ± 
43.87  

648.52 ± 
39.55*  

506.32 ± 
94.65  

636.42 ± 
152.98* 

601.28 ± 
51.96  

767.70 ± 
117.90*  

717.86 ± 
58.36  

908.45 ± 
65.83*C,CT  

912.81 ± 
71.76  

1109.69 ± 
92.62*C 

956.15 ± 
45.80 

1120.87 ± 
71.3*C 

Peak elbow joint 
angular velocity 
(deg/s) 

467.60 ± 
53.3 

569.11 ± 
56.21*CT 

306.86 ± 
89.20 

378.70 ± 
89.68* 

423.73 ± 
34.86 

541.36 ± 
33.73*C 

484.38 ± 
54.39  

608.48 ± 
63.61*C  

452.75 ± 
64.22 

638.05 ± 
56.85*C 

413.82 ± 
84.49 

568.72 ± 
118.49* 

Peak lead leg 
GRF (N/kg) 

0.40 ± 
0.09 

0.49 ± 
0.16 

0.65 ± 
0.15 

0.96 ± 
0.28*C,CT 

0.80 ± 
0.14 

0.89 ± 
0.18* 

0.83 ± 
0.08 

1.16 ± 
0.23*C,CT 

0.85 ± 
0.16 

1.15 ± 
0.20*C 

1.05 ± 
0.27 

1.48 ± 
0.41*C 

Peak rear leg 
GRF (N/kg) 

0.98 ± 
0.17 

1.40 ± 
0.29* 

0.87 ± 
0.14 

0.97 ± 
0.18 

0.90 ± 
0.18 

1.20 ± 
0.24* 

0.82 ± 
0.13 

0.92 ± 
0.11 

0.96 ± 
0.24 

1.22 ± 
0.17*CT 

0.75 ± 
0.13 

0.95 ± 
0.24* 

Total lead leg net 
braking impulse 
(N/s/kg) 

-0.52 ± 
0.65 

-1.20 ± 
0.38* 

-3.34 ± 
2.11 

-3.89 ± 
1.80 

-4.41 ± 
5.08 

-6.94 ± 
3.10*C 

-6.65 ± 
3.06 

-9.67 ± 
4.51* 

-2.54 ± 
1.63 

-10.09 ± 
4.58*C 

-7.04 ± 
3.66 

-8.97 ± 
3.26 

Total lead leg 
vertical impulse 
(N/s/kg) 

5.19 ± 
3.81 

18.05 ± 
5.89 

11.04 ± 
4.20 

22.77 ± 
5.74C 

43.98 ± 
19.38 

102.64 ± 
49.08*C 

27.91 ± 
9.37 

74.30 ± 
36.71*C 

47.03 ± 
16.07 

133.95 ± 
42.40*C 

41.80 ± 
18.05 

73.88 ± 
15.96C 

Total rear leg net 
propulsive 
impulse (N/s/kg) 

1.05 ± 
0.88 

2.59 ± 
0.79* 

2.94 ± 
1.53 

6.52 ± 
3.38* 

3.12 ± 
1.11 

8.71 ± 
2.49* 

7.99 ± 
3.97 

13.29 ± 
6.58*C 

2.79 ± 
1.87 

11.05 ± 
3.32*C 

6.87 ± 
4.12 

11.52 ± 
4.88*C 

Total rear leg 
vertical impulse 
(N/s/kg) 

21.78 ± 
12.67 

37.87 ± 
16.92* 

13.94 ± 
3.8 

50.35 ± 
22.76*C 

50.41 ± 
18.25 

108.27 ± 
50.01* 

42.50 ± 
19.08 

111.33 ± 
57.24* 

47.62 ± 
16.03 

126.34 ± 
38.91* 

33.83 ± 
23.04 

92.86 ± 
35.36* 

 
*denotes significantly different from pre-intervention value at Bonferroni-adjusted P level. 
C = significantly different than control group (P < 0.05). 
CT = significantly different than contrast training group (P < 0.05). 

Table 6.6. Contrast training group kinematic and kinetic variable values across punch types from pre-to-post-intervention 
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Jab Rear-hand cross Lead hook Rear hook Lead uppercut Rear uppercut 

Pre Post  Pre Post  Pre Post  Pre Post  Pre Post  Pre Post  

Punch delivery 
time (ms) 

379 ±  
58.8 

318 ±  
52.6* 

484 ± 
95.9 

420 ± 
91.2* 

640 ±  
108.1 

569 ± 
107.6* 

586 ±  
142.2 

522 ± 
143.7* 

633 ±  
107.1 

568 ± 
102.6* 

570 ±  
123.3 

505 ± 
119.6* 

Peak fist velocity 
(m/s) 

5.38 ± 
0.45 

6.31 ± 
0.37*C 

6.59 ± 
0.81 

7.45 ± 
0.79*C 

11.45 ± 
1.30 

13.24 ± 
0.83*C,ST 

10.71 ± 
0.93 

11.91 ± 
0.91*C,ST 

10.62 ± 
1.36 

12.17 ± 
1.39*C 

11.22 ± 
1.77 

12.64 ± 
1.52*C 

Peak shoulder 
joint angular 
velocity (deg/s) 

615.33 ± 
96.38 

706.63 ± 
95.02* 

495.99 ± 
41.82  

707.09 ± 
90.54* 

770.70 ± 
150.85  

985.38 ± 
151.57* 

867.04 ± 
161.92  

1196.33 ± 
133.63* 

974.77 ± 
86.11  

1228.50 ± 
92.80* 

1045.25 ± 
98.64 

1263.80 ± 
74.90* 

Peak elbow joint 
angular velocity 
(deg/s) 

605.93 ± 
113.84 

786.32 ± 
131.18*C,ST 

343.71 ± 
98.22 

478.02 ± 
74.18*C 

381.80 ± 
50.10 

590.18 ± 
42.97*C 

511.97 ± 
85.60 

717.65 ± 
83.59*C 

479.60 ± 
106.45 

737.57 ± 
74.73*C 

471.84 ± 
95.78 

696.32 ± 
87.91*C 

Peak lead leg 
GRF (N/kg) 

0.48 ± 
0.16 

0.68 ± 
0.27* 

0.60 ± 
0.14 

1.47 ± 
0.11*C,ST 

0.79 ± 
0.17 

1.03 ± 
0.10*C 

0.81 ± 
0.10 

1.44 ± 
0.15*C,ST 

0.86 ± 
0.16 

1.23 ± 
0.11*C 

0.98 ± 
0.16 

1.69 ± 
0.23*C 

Peak rear leg 
GRF (N/kg) 

0.91 ± 
0.12 

1.59 ± 
0.25*C 

0.87 ± 
0.17 

1.12 ± 
0.25* 

0.86 ± 
0.11 

1.52 ± 
0.37*C 

0.86 ± 
0.12 

0.98 ± 
0.15*C 

1.01 ± 
0.17 

1.51 ± 
0.23*C,ST 

0.78 ± 
0.19 

1.18 ± 
0.17*C 

Total lead leg net 
braking impulse 
(N/s/kg) 

-1.28 ± 
0.38 

-1.47 ± 
1.12*C 

-4.29 ± 
1.09 

-5.14 ± 
2.95 

-2.80 ± 
1.00 

-4.99 ± 
3.02*C 

-8.24 ± 
0.75 

-10.96 ± 
3.01* 

-2.69 ± 
0.72 

-6.55 ± 
4.17*C 

-7.18 ± 
1.14 

-10.17 ± 
1.22* 

Total lead leg 
vertical impulse 
(N/s/kg) 

5.37 ± 
2.32 

22.73 ± 
16.45* 

13.82 ± 
2.30 

33.71 ± 
30* 

58.31 ± 
7.67 

113.67 ± 
43.24*C 

30.81 ± 
3.49 

85.54 ± 
58.77*C 

34.95 ± 
4.92 

115.13 ± 
33.05*C 

36.35 ± 
3.95 

93.12 ± 
35.55*C 

Total rear leg net 
propulsive 
impulse (N/s/kg) 

0.32 ± 
0.48 

1.91 ± 
0.61*C 

3.18 ± 
1.61 

8.05 ± 
4.04* 

1.40 ± 
0.30 

7.88 ± 
5.30*C 

8.26 ± 
0.94 

13.45 ± 
2.83* 

1.39 ± 
0.56 

9.08 ± 
5.09*C 

6.55 ± 
0.99 

11.44 ± 
1.73*C 

Total rear leg 
vertical impulse 
(N/s/kg) 

16.03 ± 
3.02 

37.81 ± 
9.93* 

11.64 ± 
7.68 

64.41 ± 
36.65*C 

37.75 ± 
3.33 

128.9 ± 
50.01*C 

32.35 ± 
6.47 

105.46 ± 
47.18*C 

40.88 ± 
4.08 

123.26 ± 
52.80*C 

27.11 ± 
4.06 

95.92 ± 
31.48*C 

 
*denotes significantly different from pre-intervention value at Bonferroni-adjusted P level. 
C = significantly different than control group (P < 0.05). 
ST = significantly different than strength training group (P < 0.05). 



   

251 
 

Table 6.7. Physical performance-related and body mass values from pre-to-post-intervention 
 

Variable Control group Strength group Contrast group 

 Pre Post %change Pre Post %change Pre Post %change 

Back squat 1RM 
(kg) 

102.0 ± 9.1 101.5 ± 8.9 -0.5 102.5 ± 2 116.5 ± 17.3*M +13.7 109.5 ± 24.9 134.0 ± 24.5*L +22.4 

Back squat 1RM 
(kg·Mb

-0.67) 
5.4 ± 0.3 5.4 ± 0.3 -0.6 5.5 ± 0.8 6.2 ± 0.6*L +13.2 5.7 ± 1.1 7.0 ± 1.0*L +21.9 

Bench press 1RM 
(kg) 

97.0 ± 9.1 97.5 ± 8.5 +0.5 102.0 ± 21.5 111 ± 20.2*M +8.8 101.0 ± 21 120.1 ± 23.7*L +15.8 

Bench press 1RM 
(kg·Mb

-0.67) 
5.1 ± 0.3 5.1 ± 0.3 +0.4 5.4 ± 0.9 5.9 ± 0.8*M +8.4 5.3 ± 0.9 6.3 ± 1.0*M-L +18.3 

HBD 1RM  
(kg) 

130.5 ± 8.6 131 ± 7.2 +0.4 132.5 ± 15.6 153.5 ± 16.6*L +15.8 139.5 ± 26.2 173.50 ± 25.9*L +22.2 

HBD 1RM  
(kg·Mb

-0.67) 
6.9 ± 0.4 6.9 ± 0.4 +0.2 7.1 ± 0.5 8.2 ± 0.4*L +15.2 7.3 ± 1.1 8.9 ± 1.2*L +21.6 

Jump squat Pmax 
(W/kg) 

56.3 ± 4.9 56.3 ± 4.9 -0.0 55.0 ± 8.9 60.1 ± 8.8*S +9.3 53.6 ± 9.1 63.6 ± 9.2*M +18.8 

Bench throw Pmax 
(W/kg) 

5.5 ± 0.7 5.6 ± 0.7 +0.2 5.4 ± 1.0 6.01 ± 1.1*S +11.6 5.3 ± 1.2 6.3 ± 1.1*M +20.1 

Shot put (m)  
(lead hand) 

9.03 ± 0.46 9.04 ± 0.48 +0.0 9.49 ± 1.54 10.11 ± 1.54*M +6.6 9.45 ± 1.2 10.51 ± 1.24*M-L +11.2 

Shot put (m)  
(rear hand) 

10.03 ± 0.41 10.22 ± 0.4 +1.9 11.26 ± 1.93 12.07 ± 2.1*M +6.2 11.27 ± 2.26 12.38 ± 2.3*M +9.9 

Body mass  
(kg) 

80.4 ± 5.6 80.6 ± 5.4 +0.2 78.9 ± 7.7 79.5 ± 7.6*S +0.9 81.1 ± 4.8 81.7 ± 5.2*S +0.8 

*denotes significantly different from pre-intervention value at Bonferroni-adjusted P level. 
Tdenotes trivial effect relative to C group. 
Sdenotes small effect relative to C group. 
Mdenotes moderate effect relative to C group. 
Ldenotes large effect relative to C group. 
kg·Mb

-0.67 = kg body mass to the power 0.67. 
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6.4. Discussion 

This study has established that ST and CT programmes performed alongside regular 

boxing practice enhance biomechanical and physical performance-related 

characteristics associated with the six fundamental punch types, with the CT 

programme yielding superior effects to the ST programme. These novel findings 

suggest coaches and boxers should consider implementing such RT methods within 

their current training practice to augment many of the qualities associated with 

successful boxing performance. 

 

6.4.1. Punch kinematics 

The moderate-to-large decreases in punch delivery time from baseline to post-

intervention measures across all punch types for both ST and CT groups indicate that 

high-force and combined high-force and velocity RT can significantly decrease the 

time taken to execute a maximal punch, regardless of punch technique (i.e. straight, 

hook, or uppercut). The delivery time improvements of 7.2-10.1% in the ST group 

exceeded the SWC% values (2.9-4.2% - see Appendix 5) required to have a 

‘meaningful’ effect on performance across all punches. Meanwhile, CT group 

performance increases (10.4-16%) surpassed the MWC% values (7.4-12.5%) for each 

punch type, signifying CT was more effective than ST at decreasing punch delivery 

times. These findings are noteworthy given the reliance of successful boxing outcome 

on the speed of technique execution, with rapidly delivered strikes affording an 

opponent less time to defend/evade (Verkhoshansky & Siff, 2009) and potentially 

increasing the ‘knock-out potential’ of a punch (La Bounty et al., 2011). Thus, given 

the importance of delivery time to maximal punching (Chapter 3), and its relationships 
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with muscular strength, power, and speed performance variables (Chapter 5), the ST 

and CT group delivery time decreases signify the efficacy of such RT interventions in 

the enhancement of this key maximal punching kinematic characteristic. 

Enhancements in peak fist velocity across all punch types by ST (7.1-12.9%) 

and CT (12.7-17.2%) groups also reflect the positive influence of both high-load and 

combined high-load, high-velocity RT on this characteristic. Indeed, for both training 

groups, peak fist velocity improvements were larger than the MWC% values (5.4-

11.3%) across all punch types, while the CT group also exhibited jab and lead hook 

improvements larger than LWC% values (jab = 8.3%, lead hook = 13.4% - Appendix 

5). Only jab fist velocities have been examined previously, with performance 

improvements of 6-11% reported following six-weeks of resistance band training 

(Markovic et al., 2016) being comparable with the ST group for the jab (10.9%), but 

less than the CT group (13%). Though the different intervention methods between 

studies renders comparisons difficult, the results of both emphasise jab peak fist 

velocity can be enhanced via RT, with the individual boxer responses to the ST and 

CT interventions in the current study adding further credibility to this notion (see 

Appendix 6). Given the jab is the most frequently executed punch within competition 

(Davis et al., 2017; Thomson & Lamb, 2016), increasing its velocity via ST or CT 

interventions could improve its effectiveness (‘damage potential’ from augmented 

forces) and thereby overall boxing performance. This is based upon the impulse-

momentum relationship whereby an increase in fist velocity yields an increase in 

momentum (mass x velocity), and consequently, more force being imparted upon 

impact (impulse = force x time; Turner et al., 2011). Complimentary benefits may 

emerge via the large increases in fist velocity of the other punches (rear-hand cross, 

lead and rear hooks and uppercuts) from pre-to-post following ST (11.3-12.9%) and 
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CT (11.2-15.5%) RT. Coaches and boxers should therefore take note of these findings 

and consider adopting ST or CT programmes alongside their technical practice to 

enhance these characteristics of punches. 

With respect to the observed improvements in peak angular joint velocities 

(shoulder and elbow) across all punches (apart from the rear-hand cross) following 

RT, no comparable boxing or combat sport-related findings exist. Some research 

among sports possessing kinematic similarities with punching has documented 

improvements in throwing and upper-limb joint velocity in water polo (Ramos Veliz et 

al., 2014), handball (Hermassi et al., 2011; Hoff & Almåsbakk, 1995), Basketball 

(Hasan et al., 2018), softball (Prokopy et al. 2008), and baseball (Palmer et al., 2015) 

players following upper-body RT. Indeed, as upper-body strength and power are 

associated with the angular shoulder and elbow velocities of different punches 

(Chapter 5), the angular joint velocity improvements across ST (10.3-40.9%) and CT 

(14.8-53.8%) groups are a result of the augmented upper-body muscular strength and 

power among the current boxers. Though both training interventions were effective at 

enhancing these variables ‘meaningfully’, CT yielded larger peak shoulder and elbow 

angular joint velocity increases than ST alone, supporting the hypothesis CT is more 

effective than ST at increasing maximal punch kinematics. Subsequently, coaches and 

boxers should consider implementing either training programme to strengthen the 

upper-extremity movement patterns and joint motions associated with different 

punches (e.g. shoulder adduction, abduction, flexion and extension, and elbow flexion 

and extension - Cabral et al., 2010; Piorkowski et al., 2011).  

It is noteworthy that the CT intervention yielded larger increases only in peak 

angular shoulder (rear hook) and elbow (jab) joint velocities than the ST. While this is 

difficult to explain, it is possibly due to the power/ballistic exercises within the CT 
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group. Previous research has suggested the combination of heavy RT and high-

velocity movements in the same session is an effective strategy for enhancing intra- 

and inter-muscular coordination that effectively translates into augmented functional 

performance (Cronin, McNair, & Marshall, 2002). It seems therefore mimicking the 

high lower-limb forces and upper-limb velocities associated with maximal punching 

(Chapter 3; Piorkowski et al., 2011) via combined strength and power resistance 

exercises (e.g. CT group) can generate increased upper-extremity function at high-

velocities, greater RFD, and overall athletic performance (Davies et al., 2015; Swanik 

et al., 2016).  

 

6.4.2. Punch kinetics 

Though the effects of RT on the impact kinetics of maximal punching, such as force 

(Čepulėnas et al., 2011) and power (Del Vecchio et al., 2017; 2019; Hlavačka, 2014; 

Kim et al., 2018) have been reported, no research has investigated its effects upon 

lower-body kinetics. The large and moderate-to-large post-intervention GRF and 

impulse differences (lead and rear legs) between groups (e.g. lead leg GRF - ST = 

11.6-47.1%, CT = 30.3-146.1%) illustrate CT is more effective at enhancing these 

kinetic variables than ST alone. Indeed, lead leg kinetics are crucial in minimising 

kinetic energy loss (Yan-ju et al., 2013), while rear leg kinetics are responsible for the 

generation of kinetic energy (Cheraghi et al., 2014). These variables subsequently 

amalgamate to transmit force from the lower limbs to the arm/hand segments via 

sequential joint extension angles, angular extension velocities and extensor moments 

(Chapter 3; Cheraghi et al., 2014; Lenetsky et al., in press; Turner et al., 2011). With 

regards to these kinetic variables, it appears the larger lead leg GRF and braking 
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impulses documented for the CT group are due to the addition of ballistic/plyometric 

exercises to this training modality, as well potential improvements in lead hip, knee 

and ankle extension angles, angular extension velocities and extensor moments, 

respectively (Chapter 3). Such resistance exercises have been reported to increase 

lower-limb musculotendinous stiffness, force absorption capabilities and force-time 

characteristics (Davies et al., 2015; Fouré et al., 2011; Kubo et al., 2007) to a greater 

extent than heavy ST alone. Indeed, the improvements in peak lead leg GRF for CT 

group compared to ST group in the current study corroborate the results of previous 

research. Moreover, the increases in upper-limb joint angular velocities (shoulder and 

elbow) and peak fist velocities potentially suggest that improving this kinetic variable 

may have improved the lead leg’s ability to resist unwanted knee flexion and provide 

isometric stability that permitted the rear leg to generate kinetic energy that was 

successfully transferred to the upper-extremities (Cabral et al., 2010; Chapter 3; 

Cheraghi et al., 2014; Lenetsky et al., 2019; Turner et al., 2011). Indeed, the significant 

increases in peak rear leg GRF exhibited by the CT group likely improved a boxer’s 

ability to generate greater peak rear ankle, knee and hip extension angles, angular 

extension velocities and extensor moments that assisted in the transmission of 

momentum to the upper-extremities (Chapter 3). 

Consequently, the magnitude of performance improvements for the CT group 

(see Appendices 4 and 5) supports its inclusion as part of boxer’s contest preparation 

in order to enhance lead and rear leg kinetics across all punches. Indeed, in addition 

to technical practice, it is recommended boxers implement specific training that 

enhances force production and stability of the lead leg as a means of potentially 

enhancing rear hand punch peak fist velocities via an increase in lead leg GRF and 

impulse alongside peak ankle, knee and hip joint extension angles, angular extension 
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velocities and extensor moments (Chapter 3). Increasing the force generating 

capabilities of the rear leg via specific training that strengthen lower-limb joint 

extensions and enhance extension velocities, GRF and impulse are also 

recommended as a means of augmenting peak fist velocities (Chapter 5). 

 

6.4.3. Physical performance-related variables 

The observed CT group back squat and bench press 1RM increases were superior to 

those of Kim et al. (2018), who reported 16.3% (back squat) and 18% (bench press) 

improvements following a 16-week ‘boxing-specific’ RT programme. Again, this likely 

stems from the loading parameter differences between studies, whereby boxers in Kim 

et al. (2018) performed traditional (e.g. barbell back squat) and boxing specific (e.g. 

resistance band punches) exercises in a circuit fashion, compared to the heavy, 

strength enhancing loads (~85-90% 1RM) in the current study. These results suggest 

a CT intervention that alternates heavy resistance exercises (e.g. bench press at 90% 

1RM) with a power exercise sharing similar kinematics (e.g. bench throw, ballistic 

push-up) is the more effective means of increasing muscular strength in amateur 

boxers. This is likely due to the neural and mechanical adaptations associated with 

CT, such as increased type IIX muscle fibre recruitment, agonist muscle neural drive, 

α-motor neuron excitability (via H-reflex changes), maximal cross-bridge cycle 

transition rate, and muscle tendon unit (MTU) stiffness (Aagaard et al., 1985; 2002; 

Bernardi et al., 1996; Cormie et al., 2011a; Guillich et al., 1996; Hammani et al., 2017; 

Tillin et al., 2012; Trimble & Harp, 1996).  

Previous research has reported increases in type IIA myosin heavy chain 

isoform percentages (Liu, Schlumberger, Wirth, Schmidtbleicher, & Steinacker, 2003; 
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Perez-Gomez et al., 2008) following ST, while power training preserves, and 

potentially increases, the percentage of type IIX muscle fibres (Bottinelli, Canepari, 

Pellegrino, & Reggiani, 1996; Harridge et al., 1996). Meanwhile, combined strength 

and power training (such as CT) preserves type IIX muscle fibre proportion, as power 

training either in the same session or on alternate days to ST minimises the shift to 

type IIA (Stasinaki et al., 2015). This type IIX muscle fibre preservation is beneficial 

for muscular power production as these fibres generate more forceful contraction 

velocities, power, and rate of tension than type IIA, type IIB and type I fibres, 

respectively (Bottinelli et al., 1996; Harridge et al., 1996; Stasinaki et al., 2015). 

Furthermore, type IIX fibres possess the greatest cross-bridge cycling rate of all 

muscle fibres which influence early contraction phase RFD and agonist muscle neural 

drive (Aagaard et al., 2002; Andersen & Aagaard, 2006; Oliveira, Oliveira, Rizatto, & 

Denadai, 2013; Tillin et al., 2012). Indeed, changes in early contraction phase RFD 

are related (r = 0.61) with changes in type IIX muscle fibre percentages following an 

RT intervention (Andersen et al., 2010), meaning high force can be applied rapidly at 

the onset (~50 ms) of a dynamic movement/motion (e.g. the initiation of a maximal 

punch). In addition, improvements in MTU stiffness (19-34% reported in previous 

research following 4 to 6-week RT interventions - Kubo, Kanehisa, & Fukunaga, 2002; 

Tillin et al., 2012) may have also occurred among the current study’s participants given 

their exposure to high-force (ST and CT) and high-velocity (CT) resistance exercises 

(Cormie et al., 2011a). Subsequently, an increase and/or maintenance in type IIX 

muscle fibre proportion alongside augmented MTU stiffness may have occurred to a 

larger degree in the CT group due to these boxers increasing their ability to produce 

both explosive and maximal muscular force as opposed to maximal force alone 

(Stasinaki et al., 2015).  
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Increases in neural drive of ST and CT boxers are also suggested to have 

occurred following the RT interventions. Previous research has reported how 

increases in agonist neural drive account for up to 30% of muscular strength 

adaptations following short-term RT interventions (≤12-weeks) (Balshaw et al., 2017). 

Moreover, high-load RT (80% 1RM) results in significantly greater neural drive 

adaptations than low-load RT (30% 1RM) that account for the disparate increases in 

muscle strength observed between such training loads (Jenkins et al., 2017). 

Neuromuscular mechanisms that influence neural drive include contractile RFD, 

motoneuron recruitment, discharge rate and firing frequency, incidence of discharge 

doublets and sarcoplasmic reticulum Ca2 kinetics changes, all of which are enhanced 

following periods of RT (Aagaard et al., 2002; Gabriel et al., 2006). Improvements in 

contractile RFD following RT have been evidenced by increases in peak RFD, MVC, 

EMG signal amplitude and rate of EMG rise (Aagaard et al., 2000; 2002; Häkkinen et 

al., 1985; 1998; Narici, Roig, Landomi, Minetti, & Cerretelli, 1989; van Cutsem et al., 

1998). Meanwhile, motoneuron recruitment, discharge rate and firing frequency 

increases of 15-49% have been reported following 6-weeks of RT (Kamen & Knight, 

2004), which are suggested to influence the magnitude of contractile fibre tensions 

(Aagaard et al., 2002; Gabriel et al., 2006), that also reduce the neural cost of 

contractions (lower activation required to produce the same absolute torque) following 

RT (Jenkins et al., 2017). Consequently, though such mechanisms were not analysed 

in the current study, it seems likely that the performance increases exhibited by ST 

and CT groups were the consequence of augmented neural drive and related neural 

responses resulting from RT. In addition, previous research has reported a sixfold 

increase (5% to 33%) in occurrence of discharge doublets (firing pattern of individual 

motor units) following ballistic/explosive-type RT (van Cutsem et al., 1998). Such 
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changes enhance the maximal contraction force and tension capabilities of the trained 

muscle(s) and muscle contraction force by increasing sarcoplasmic reticulum binding 

rates (Jones et al., 2013) that take advantage of the ‘catch-like’ properties of skeletal 

muscle (Aagaard, 2003; Gruber & Gollhofer, 2004). Therefore, it is reasonable to 

suggest that such changes in neural mechanisms may explain why the CT group 

exhibited greater muscular strength and power improvements than the ST group. 

Indeed, the additional ‘contrasting’ (i.e. ballistic/explosive) exercises the CT group 

completed may have promoted adaptations across a greater range of neural qualities. 

Although, it should be stated that the scale of both neural and morphological 

adaptations during early phase resistance training programmes are still somewhat 

equivocal (Enright, Morton, Iga, & Drust, 2015). Thus, future research is recommended 

to quantify the changes in such characteristics during and following ST and CT 

programmes in conjunction with regular boxing training. 

Whilst neural and mechanical adaptations are key components of strength and 

power improvements during and following RT, morphological characteristics (i.e. 

fascicle length; fascicle angle of pennation) also influence early adaptations to RT 

(Cormie et al., 2011a; Blazevich, 2006) and the force generating capacity of 

musculature (Seynnes et al. 2007). Increases in fascicle length (Lf - fascicular path 

between the insertions of the fascicle onto the upper and deeper aponeurosis 

(Stasinaki et al., 2015) permit a muscle to contract more rapidly and generate greater 

peak power at higher velocities, while decreases in length facilitate larger peak force 

generation capabilities (Wilson & Lichtwark, 2011). Previous research has reported 

increases in the fascicle length of quadricep musculature after 4-weeks (4.8% - Tillin 

et al., 2012), 5-weeks (9.9% - Seynes et al., 2007), and 6-weeks of ST (2.1% - 

Stasinaki et al., 2015), respectively. Such fascicle length adaptations are suggested 
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to occur as a result of a serial increase in sarcomere addition, both in series and in 

parallel (Wickiewicz, Roy, Powell, & Edgerton, 1983), in addition to larger ranges of 

movement (Blazevich, Gill, & Zhou, 2006) and increased hypertrophy (muscle 

thickness and cross-sectional area - Farup et al., 2012). In contrast, adaptations to CT 

include decreases in fascicle length of the vastus lateralis (-7%) and gastrocnemius (-

11.8%), respectively, after 6-weeks (Stasinaki et al., 2015). The authors suggested 

that the decrease in fascicle length following CT occurred due to an increase in 

strength-to-body mass ratio, supported by the muscular strength increases (18.4–

35.6%) without notable changes in sarcomere addition, muscle thickness, fibre cross 

sectional area (i.e. hypertrophy) or body mass (Stasinaki et al., 2015). Given that 

shorter fibre lengths can generate greater peak forces (Wilson et al., 2011), and if 

combined with high-velocity actions/exercises, can reduce their shortening velocities 

(Wakeling, Blake, Wong, Rana, & Lee, 2011), these findings along with those of the 

current study appear to suggest that CT is an effective RT method for boxers aiming 

to enhance muscular strength, power and architectural characteristics without the 

addition of unwanted hypertrophy or body mass increases. 

In addition to fascicle length, the fascicle angle of pennation (θp) (the angle 

between the muscle’s fascicles and the line of action – Cormie et al., 2011a) is another 

architectural characteristic affected by RT. Increases of 7–34% in this variable have 

been reported following RT interventions ranging from 5 to 16-weeks (Aagaard et al., 

2001; Blazevich et al., 2007; Blazevich, Gill, Bronks, & Newton, 2003; Enright et al., 

2015; Faup et al., 2012; Seynnes, de Boer, & Narici, 2007).  An increase of 29% has 

also been documented for the triceps brachii following 16-weeks of RT (Kawakami, 

Abe, Kuno, & Fukunaga, 1995). More specific to the current study, Stasinaki et al. 

(2015) reported how CT increased vastus lateralis (19.9%) and gastrocnemius 
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(14.3%) fascicle angles after a 6-week intervention, while ST increased the same 

variables to a larger degree (vastus lateralis = 26.1%, gastrocnemius = 5.3%). 

Increases in fascicle angles of pennation enable more contractile material to attach to 

the aponeurosis, leading to increased muscular force output (Erskine, Fletcher, & 

Folland, 2014). Moreover, it is also indicative of muscle architecture remodelling 

through the addition of sarcomeres in series (myofibrils), which in turn, suggest an 

increase in muscular hypertrophy at the macroscopic level (Blazevich et al., 2003; 

Seynnes et al., 2007). This implies that the ST group in the current study may have 

achieved greater muscular hypertrophy adaptations than the CT group, but not 

muscular strength or power. 

 Indeed, Granacher et al. (2016) established that CT resulted in greater power 

and RFD performance changes compared with other RT methods (including ST). 

Though ST generates increases in maximal muscular strength and power by targeting 

the force component of the power equation (force x velocity) (Cormie et al., 2011b, 

Deschenes & Kraemer, 2002), the ability to apply force at high velocities may be 

hindered if excessive emphasis is placed upon high load, low-velocity movements 

(Cormie et al., 2011b; Freitas, Martinez-Rodriguez, Calleja-Gonzalez, & Alcaraz, 

2017). Meanwhile, though ballistic/plyometric exercises are reported to enhance 

maximal muscular power production (Cormie et al., 2011b; Markovic & Mikulic, 2010), 

jump performance (García-Pinillos, Martínez-Amat, Hita-Contreras, Martínez-López, 

& Latorre-Román, 2014, Baker, 1996; Markovic & Mikulic, 2010) and sprint 

performance (Bolger, Lyons, Harrison, & Kenny, 2015; García-Pinillos et al., 2014; 

Rumpf, Lockie, Cronin, & Jalilvand, 2016), such performance increases may also 

plateau if muscular strength is not increased concurrently based on the linear 

relationship between force and power production (Cormie et al., 2011a). 
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Consequently, CT has been suggested to generate larger jump and sprint 

performance increases compared to strength, power or speed training alone (Argus et 

al., 2012; de Villarreal et al., 2013; Fatouros et al., 2000) due to this training modality 

enhancing motor skills along the whole force-velocity curve, and subsequently, 

producing optimal training conditions for neuromuscular power adaptations (Ebben & 

Watts, 1998; Freitas et al., 2017) and improvement of force-time characteristics that 

can be effectively transferred to athletic activities (Suchomel et al., 2016; 2018). 

Indeed, CT has augmented lower-body power performance greater than traditional RT 

(such as ST) and control interventions (d = 1.3-1.5; Pagaduan et al., 2019). Moreover, 

CT has been shown to increased CMJ height and flight time and repeated short sprint 

ability (RSSA) greater than ST (Spineti et al., 2016), with the authors suggesting CT 

is the optimal RT method when attempting to enhance motor skills associated with 

speed, power and RFD (though both CT and ST improved muscular strength to 

comparable degrees). The performance enhancements associated with CT are 

reported to result from augmented muscle phosphorylation, calcium sensitivity and H-

reflex activity following CT (Hodgson, Docherty, & Robbins, 2005; Robbins, 2005; 

Sale, 2002) in addition to increased CD34/CD45 immune system stem-cell secretions 

(Labib, 2013; Sidney, Branch, Dunphy, Dua, & Hopkinson, 2014) and preservation of 

type IIX muscle fibres (Bottinelli, Canepari. Pellegrino, & Reggiani, 1996; Harridge et 

al., 1996; Stasinaki et al., 2015). Another suggestion from the current literature relates 

to greater volume associated with CT interventions than those observed for other RT 

methods (Pagaduan et al., 2019). This may provide a larger training stimulus, and 

subsequently, produce greater muscular, neuromuscular and morphological 

adaptations (Wilson et al., 2013). Though it should be stated that if training volume is 

too high, greater degrees of neuromuscular fatigue maybe induced as a result of CT 
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that may have a negative influence upon training adaptations when performed in 

conjunction with sport/technical practice (Carter, & Greenwood, 2014, Rajamohan et 

al., 2010, Wilson et al., 2013). 

With regards to frequency, previous research reported that 2 CT sessions per 

week increased sprint performance to a similar degree as ≥ 3 weekly sessions (Alves, 

Rebelo, Abrantes, & Sampaio, 2010; Cavaco et al., 2014). In addition, lower weekly 

training frequencies are required to increase and/or maintain performance standards 

when certain muscles/body parts are regularly used during sport-specific training (Tan, 

1999). Current literature concerning short- and long-term training adaptations 

associated with CT suggests interventions of ≥ 6 weeks are optimal for this training 

modality (Pagaduan et al., 2019). Therefore, though training responses and 

adaptations to CT are likely to be individualised, twice-weekly sessions for a minimum 

duration of 6-weeks (such as the present study) are effective at augmenting sprint 

performance, lower-body power and force-time characteristics (Freitas et al., 2017; 

Pagaduan et al., 2019). 

Consequently, given the potential neural and morphological improvements 

achieved through CT, boxers are encouraged to integrate CT programmes with heavy 

(≥ 85% 1RM) and light (0-50% 1RM) RT loads to improve force-time characteristics at 

various points along the force-velocity curve (Haff, Whitley & Potteiger, 2001), in 

addition to increased type IIX muscle fibre proportion, fascicle pennation angles, and 

muscle fibre CSA. Such adaptations are likely to enhance physical performance-

related characteristics associated with maximal punching (Chaabene et al., 2015; 

Chapter 5).  
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It should be stated that there were noteworthy baseline muscular strength 

differences recorded between groups prior to the 6-week training interventions 

(absolute 1RM = 5.1–7.3%, normalised 1RM = 5.5–5.8%). Additional analysis was 

conducted to control for these differences (see Appendix 7) and revealed significant 

differences between groups, further indicating the effectiveness of CT and ST 

interventions at augmenting physical performance-related qualities, in spite of 

baseline differences. 

Though the efficacy of CT at augmenting physical performance-related 

variables has been reported (Argus et al., 2012; de Villarreal et al., 2013; Granacher 

et al., 2016; Pagaduan et al., 2019; Spineti et al., 2016), the optimal loading 

‘contrasting’ (i.e. power) exercise loading parameter for boxers has yet to be identified. 

Indeed, high-load (≥ 85% 1RM) strength exercise and subsequent ballistic exercises 

of kinematic similarity performed with < 60% 1RM have been suggested to optimise 

maximum power output via increased motor unit recruitment, α-motor neuron 

excitability, and actin-myosin binding rates (Jones et al., 2013; Lim & Barley, 2016; 

Rassier & Macintosh, 2000). Meanwhile, other research advocates the use of ballistic 

body weight exercises (e.g. CMJ – Walker, Ahtiainen, & Häkkinen, 2010) and loaded 

throws (e.g. med-ball shot put) that simulate relevant sporting movements to increase 

punching performance (Lenetsky et al., 2013). A further option is the inclusion of 

maximal punches themselves as the ‘contrasted’ exercise (Turner et al., 2011), with 

the suggestion that pairing a multi-joint strength-based exercise with a maximal punch 

(e.g. rear-hand cross) may enhance movement-specific force-time characteristics 

(Sale, 2002), and develop the cognitive and physical application of the potentiated 

muscular effects to maximal punching (Turner et al., 2011). Therefore, future research 

should investigate the effects of CT protocols that employ different loading parameters 
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for the ‘light/power’ exercises on the physical performance-related and biomechanical 

characteristics of maximal punches to establish the most effective loading parameter 

for amateur boxers. 

Improvements in the ST group’s jump squat (8.5%) and bench throw (10.4%) 

are comparable to those reported recently (7% and 8%, respectively) by Loturco et al. 

(2018), while the CT group experienced noticeably larger increases of 16.7% and 

15.8% from baseline. Such a difference corroborates previous findings that CT 

produces greater training adaptations than ST and/or power training performed in 

isolation (de Villarreal et al., 2011; 2013). Moreover, the significant muscular power 

(upper-, lower- and full-body) increases exhibited by both training groups, but 

particularly the CT group, corroborate the muscular power increases reported by Kobal 

et al. (2017), and underpin the importance of high-force exercises (≥ 85% 1RM) to the 

development of muscular power (Turner et al., 2011; Zatsiorsky & Kraemer, 2006). 

Indeed, muscular strength is reported to influence various force-time characteristics 

(e.g. rate of force development (RFD), stretch shortening cycle (SSC), external 

mechanical power) that can effectively translate to high-velocity athletic activities 

(Newton et al., 1997; Suchomel et al., 2016). This may explain, given the large 

associations observed in previous studies between shot put distance and 

biomechanical characteristics of maximal punching (Chapter 5; Obmiński et al., 2011), 

the current med-ball shot put distance increases exhibited by both ST (lead = 7.4%, 

rear = 6.4%) and CT groups (lead = 11.4%, rear = 6.2%), which were noticeably 

greater than those reported by Čepulėnas et al. (2011 - lead = 3.8%, rear = 3.5%).  

It should be stated that the diverse nature of the workload between boxers may 

have impacted post-intervention results. Indeed, in accordance with findings in 

previous research, there is a possibility that the additional exercises completed by the 
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CT group meant they completed a greater total volume than the ST group, and 

subsequently, achieved greater neuromuscular system stimulation and adaptations 

(Pagaduan et al., 2019; Wilson et al., 2013). Though, conversely, greater training 

volumes associated with CT interventions may also induce higher levels of neural 

fatigue than in the other groups which are likely to negatively impact neuromuscular 

adaptations when combined with sport-specific technical/skill training (Carter & 

Greenwood, 2014; Pagaduan et al., 2019; Rajamohan et al., 2010; Walker, Ahtiainen, 

& Häkkinen, 2010). Therefore, it is difficult to accurately elucidate how the different 

‘workloads’ of each RT intervention influenced the pre-to-post performance changes 

among ST and CT boxers despite total training intensity and volume across the 6-

week interventions equated to the greatest degree between groups.  

Additionally, boxers across all groups completed high-repetition 

callisthenic/bodyweight exercise exercises during boxing-specific skill/technical 

training sessions throughout the 6-week intervention period. Indeed, the C group 

completed bodyweight exercises within their boxing technical/skill training sessions as 

part of their warm up, sparring preparation and general ‘conditioning’ (e.g. various 

callisthenic exercises performed in a circuit fashion for a number of ‘rounds’). From 

training diaries provided by all boxers over the 6-week period, C group completed a 

total 8233 ± 3952 repetitions of such exercises. Boxers in ST and CT groups also 

completed similar exercises as part of their boxing skill/technical sessions (ST = 5100 

± 2687 total repetitions, CT = 3900 ± 4480 total repetitions) in addition to their twice-

weekly intervention sessions. This implies that although the C group completed a 

greater total volume of bodyweight/callisthenic exercises (that may have included 

plyometrics as part of boxer’s circuit training or boxing ‘conditioning’ sessions), they 
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did not evidence any worthwhile changes in maximal punch biomechanics or physical 

performance-related qualities. 

In addition to bodyweight/callisthenic exercises, the total hours of boxing 

skill/technical training completed were 28.8 ± 3.4 (C), 27.2 ± 6.8 (ST), and 26.2 ± 5.8 

(CT), respectively, over the 6-week intervention period, comprising ~2.5 (C), ~2.4 (ST), 

and ~2.3 (CT) skill sessions per week. Furthermore, boxers across all groups also 

completed conditioning-based training sessions throughout the intervention period 

(e.g. long distance running, sprint intervals) to enhance and/or maintain cardiovascular 

endurance and conditioning. According to training diaries, the total number of minutes 

completing such training over the 6-week period was 572 ± 288.1 (C), 280 ± 62.4 (ST), 

and 339.2 ± 208.1 (CT), respectively. Therefore, it is plausible that this additional 

exercise impacted on the post-intervention performance measures between boxers. 

Though both ST and CT groups made significant performance improvements from 

baseline measures in comparison to the C group, the additional training load 

accumulated by some boxers across the intervention period suggests it cannot be 

unequivocally stated the performance improvements were solely due to the RT 

interventions. However, despite this, both ST and CT groups completed less total 

callisthenic/bodyweight exercise repetitions and conditioning-based training than the 

C group across the 6-week intervention period, yet still increased their maximal punch 

biomechanics and physical performance to significantly greater magnitudes in 

comparison. This justifies the inclusion of RT interventions within amateur boxer’s 

training programmes and reveals the stimulus achieved through ST and CT 

interventions is likely superior at increasing the biomechanical characteristics of 

punching and the physical abilities that underpin such movements (Chapter 5) in 

comparison to ‘traditional pre-fight preparation strategies’ of boxers (i.e. high-repetition 
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bodyweight/callisthenic exercises and endurance running – Bourne et al., 2002; Del 

Vecchio, 2011; Price, 2006). 

 

6.4.4. Body mass 

The trivial increases in body mass observed by both intervention groups (0.6 

kg) suggests a small increase in lean (muscle) mass, corroborating the trivial (~0.4-

0.6 kg) body mass increases in Otto et al. (2012) and Støren et al. (2008) following 6-

week and 8-week ballistic and ST interventions, respectively. This suggests that 

although the boxers in the current study had previous experience completing RT 

exercises, the stimulus of the ST and CT interventions still potentially increased body 

mass. These results suggest boxers who decrease their weight substantially prior to 

competition (i.e. to compete at the lightest weight category possible) should take into 

account the effects of ST or CT programmes on lean body mass to prevent the need 

for more radical weight loss strategies. Indeed, research has identified how acute body 

mass decreases hinder training adaptations prior to competition and diminish 

biomechanical and physical performance-related characteristics essential to 

successful combat sports performance, including fist velocity (Halperin et al., 2016b), 

punch force (Smith et al., 2001), and muscular strength and power (Roemmich & 

Sinning, 1996). Boxers should therefore endeavour to enhance their maximal strength 

and power levels (relative to their body mass) in an attempt to optimise biomechanical 

and physical performance-related characteristics of maximal punching, whilst 

remaining in the confines of their weight classification for competition. Taken together, 

it is recommended that coaches and boxers adapt/modify the training programmes 

presented herein according to boxer-specific characteristics, considering the 
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magnitude and duration of required weight loss prior to contests, to facilitate and retain 

training adaptations whilst minimising lean body mass increases. 

Though the C group also exhibited trivial body mass increases post-

intervention, no performance increases were observed in comparison to the CT and 

ST groups. Indeed, the trivial-to-small changes across all strength assessments for 

the C group support previous notions that the typical stimulus achieved via boxing 

skills training alone (Fleck & Kearney, 1993), or in combination with unloaded high-

repetition bodyweight/callisthenic exercises as is common practice among the boxing 

community (Bourne et al., 2002; Del Vecchio, 2011) is largely ineffective in enhancing 

the majority of biomechanical properties of punching and the physical abilities related 

to such movements. 

 

6.4.5. Conclusion 

In appraising the effects of six-week RT interventions on maximal punch kinetics and 

kinematics, the present study has identified that both ST and CT programmes were 

effective in enhancing the biomechanical and physical performance-related 

characteristics associated with six punch types essential to boxing. Moreover, as 

anticipated, larger improvements to these qualities were observed for CT, likely owing 

to improved upper-extremity function at high-velocities, larger lead leg 

musculotendinous stiffness and stability, and increased generation of rear leg kinetic 

energy resulting from neurological, morphological and architectural changes, in 

addition to the likely augmentation of lower-limb kinetic and kinematic varaiables (e.g. 

rear ankle, knee and hip joint extension angles, angular extension velocities and 

extensor moments – Chapter 3). Whilst these findings cultivate our understanding of 
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the influence of different RT interventions on maximal punch biomechanics, future 

research should investigate the influence of adapted CT interventions and other RT 

methods (e.g. Olympic weightlifting) on maximal punch biomechanics, in addition to 

long-term (> 6 weeks) neurological, morphological and architectural changes in 

muscle from such interventions, with the overall aim of developing boxing- and punch-

specific strength and conditioning strategies. 
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Chapter 7 

Conclusions 
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7.1. Addressing the research questions  

The aims of this series of studies were to investigate the kinetic and kinematic qualities 

(and MV) of maximal punches, quantify their associations with physical performance-

related characteristics, and identify the extent to which RT might enhance such 

features in amateur boxers. Though there remains much to scrutinise in this context, 

it is anticipated that the findings reported in this thesis will impact on the training 



   

274 
 

implemented (by coaches) and completed (by boxers), to augment performance. Such 

findings - sequentially illuminated in Figure 7.1 (below) - were borne out of four 

research questions: 

 

i. Which kinetic and kinematic measures are associated with maximal 

punching performance across conventional punch techniques? 

Chapter 3 identified that specific kinetics (peak lead and rear leg GRF, total lead and 

rear impulse) and kinematics (delivery time, peak fist velocity, peak joint angular 

velocities (shoulder and elbow), and the timings of these peak joint angular velocities, 

are associated with maximal punches performed by amateur boxers and vary 

according to punch type (straight, hook, or uppercut). For example, in terms of 

kinematics, straight punches were delivered the quickest, the lead hook exhibited the 

greatest peak fist velocity, and uppercuts exhibited the greatest joint angular velocities. 

The results in Chapter 3 present the kinetic and kinematic characteristics associated 

with each punch technique common to boxing competition and provide a more 

comprehensive analysis of the biomechanical variables associated with maximal 

punches than documented previously (e.g. Cabral et al., 2010; Cheraghi et al., 2014; 

Piorkowski et al., 2011; Whiting et al., 1988). 

ii. How does movement variability affect maximal punching performance 

and is it influenced by boxing experience?  

Chapter 4 revealed moderate-to-large within-subject, between-subject, and biological 

variability across punch types for the majority of the kinetic and kinematic variables 

examined during maximal punches. Furthermore, the non-significant inter- and intra-

subject relationships between biomechanical variables and boxing experience 
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indicated MV is not influenced by boxing experience and may be more dependent on 

a boxer’s individual structural (anthropometric), functional (physiological and 

psychological) and task (pre-determined requirements of a competition or skill 

performance) constraints (McGarry et al., 2013). These findings contrast those in 

previous combat sport literature (Lenetsky et al., 2017), and suggest both experienced 

and novice boxers manipulate biomechanical variables via different coordination 

strategies in order to achieve a (relatively) consistent intensity and end-product. 

 

iii. Are physical performance-related characteristics associated with 

maximal punching?  

Following a comprehensive examination of the relationship(s) between physical 

performance-related measures and the biomechanics of maximal punches, physical 

‘ability’ was often found to be related to the kinematics and kinetics of maximal effort 

punches (Chapter 5). More specifically, different physical traits were shown to 

influence specific punch types and/or biomechanical variables (e.g. sprint 

performance and peak rear leg GRF across all rear hand punches (cross, hook, and 

uppercut)). Furthermore, upper- and lower-body muscular strength was shown to 

relate to the peak fist velocities of most punch types, suggesting these physical traits 

influence punch kinematics in addition to previously established impact kinetics 

(Loturco et al., 2016).  

 

iv.  Can resistance training programmes enhance maximal punching 

performance? 
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Chapter 6 provided evidence to support the inclusion of ST and CT programmes in 

boxer’s current training regimens, with both interventions enhancing all the physical 

performance-related and maximal punch biomechanical measures examined in 

Chapters 3 to 5. Though the findings corroborate earlier studies suggesting RT 

facilitates punch performance (Čepulėnas et al., 2011; Hlavačka, 2014; Kim et al., 

2018), Chapter 6 reveals greater biomechanical and physical performance-related 

improvements were observed in the CT group, likely owing to the movement velocity 

affinity between the ‘contrasted’ power/ballistic exercises and maximal punching (i.e. 

high-velocity, low-to-minimal external load; Duthie et al., 2002). Importantly, Chapter 

6 reflects the first study to establish positive changes in the biomechanical 

characteristics of maximal punching owing to RT, reinforcing its inclusion within a 

boxer’s training. Understanding how RT influences maximal punch biomechanics (e.g. 

decreases delivery time, and thus affords an opponent less time to defend/evade) 

provides useful information to coaches and boxers in terms of potential training 

practices, and adds to previously identified punch impact force and power increases 

(Čepulėnas et al., 2011; Del Vecchio et al., 2017; 2019; Hlavačka, 2014; Kim et al., 

2018) among boxers following RT. 
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Figure 7.1. Schematic representation of the thesis (including each chapter’s findings). Blue ink denotes how results informed 
subsequent chapter(s); red ink denotes how results informed the training interventions of Chapter 6. 

CHAPTER 3 
 

• A comprehensive biomechanical appraisal 
of maximal punches fundamental to amateur 
boxing competition.  

• With key biomechanical variables of 
maximal punches now established, their MV 
across punches merited examination. 

• Training interventions developed based 
upon their potential effectiveness at 
enhancing kinetic and kinematic variables of 
maximal punches. 

CHAPTER 4 

• Maximal punch biomechanics exhibited 
moderate-to-high within- and between-boxer 
variability. 

• No relationships existed between maximal 
punch MV and boxing experience. 

• With high variation established, the impact of 
proposed resistance training interventions 
on MV warranted scrutiny. 

• SWC identified to indicate necessary 
intervention-based changes required. 

 

CHAPTER 5 

• Muscular strength influenced peak fist 
velocity across numerous punch types. 

• Upper-body power associated with angular 
joint velocities across all lead hand punches, 
and lower-body power with rear uppercut 
GRF (lead and rear legs). 

• From these associations, the effects of 
resistance training interventions on these 
variables warranted investigation. 

• Training intervention resistance exercise 

selection informed by the strength of 

associations between punch biomechanics 

and physical performance-related qualities. 
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MAXIMAL PUNCHING PERFORMANCE 

 CHAPTER 6 

• Both strength and contrast training groups increased the majority of kinetic and kinematic 

variables of maximal punches and physical performance-related characteristics. 

• Contrast group exhibited largest biomechanical and physical performance-related 
improvements from pre-to-post. 

FUTURE APPLICATION & RESEARCH 
• Findings should inform the development of boxing- and punch-specific strength and conditioning strategies. 

• Future research might appraise further biomechanical measures, pertinent features of combination punching and various characteristics surrounding the 
successful integration of resistance training in the sport. 
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7.2. Main findings and practical implications 

7.2.1. Biomechanics and movement variability of maximal punches 

In order to identify the biomechanical properties of maximal punches fundamental to 

boxing, a comprehensive analyses requires the combination of kinematic and kinetic 

data to quantify the motion and velocities of the upper-limbs, the forces produced by 

the lower-limbs, and how these forces are distributed between the lead and rear leg 

during different punch types (Lenetsky et al., 2013). Whilst previous research has 

investigated biomechanical characteristics of different punch types (Kimm & Thiel, 

2015; Piorkowski et al., 2011; Walilko et al., 2010; Whiting et al., 1988), the majority 

only investigated a single punch type (e.g. rear-hand cross - Cheraghi et al., 2014) or 

kinetic/kinematic variable (e.g. fist velocity - Kimm & Thiel, 2015), and utilised a diverse 

range of measurement devices (e.g. life-size strike dummy - Piorkowski et al., 2011; 

foam-covered wooden target - Cheraghi et al., 2014). Thus, a comprehensive 

biomechanical analysis informed by key kinetic and kinematic variables (Chapter 3) 

was undertaken to quantify systematically the lower-body kinetics, upper-body 

kinematics, and movement variability (Chapter 4) of all punch types fundamental to 

boxing competition (straight, hooks and uppercuts).  

 Collectively, the findings of Chapter 3 established the key biomechanical 

variables influencing maximal punches, the kinetic and kinematic differences between 

punch types, and the movement variance from punch-to-punch. Moreover, the results 

identified potential symbiotic relationships between specific biomechanical variables 

(e.g. vertical GRF) and certain punch types (e.g. uppercuts), whilst interactions 

between lower-body kinetics and upper-body kinematics were also established. These 

discoveries appear to highlight the influence of lower-limb joint kinetics and kinematics 
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in the transmission of energy and momentum to the fist via the generation of GRF in 

conjunction with sequential peaks in ankle, knee and hip joint extensions, extension 

velocities and extensor moments (kinetic chain) across punch types. Indeed, for 

straight punches (jab and rear-hand cross), lower-body joint segments (ankle, knee 

and hip) exhibit a progressive sequence of distal-to-proximal joint initiation, while the 

upper-body segments (shoulder and elbow) demonstrate inter-joint coordination that 

culminates in the projection of the fist towards the target. Meanwhile, for hook and 

uppercut punches, the lower-limb joint sequence is comparable to straight punches 

(i.e. successive ankle, knee and hip joint peak extension velocities and moments), 

though not for the upper-extremities whereby the elbow joint reaches peak angular 

velocity prior to the shoulder joint. Therefore, coaches and boxers ought to consider 

introducing technical (e.g. punch-specific drills and their integration within certain 

punch combinations) and resistance-based (e.g. landmine press to address shoulder 

and elbow angular velocities associated with straight punches) training sessions that 

address the biomechanical characteristics of punches.  

Having identified the key biomechanical features of punching, the examination 

of technical consistency was warranted to identify potential MV, compensatory joint 

actions, and coordination strategies relevant to different punches. Understanding the 

MV of maximal punching and its magnitude across punch types could offer useful 

information pertaining to a boxer’s technical progression following intervention-based 

changes. The appraisal of maximal punch MV in Chapter 4 revealed substantial inter- 

and intra-boxer variation for the majority of kinetic and kinematic variables and punch 

types, reinforcing that boxer-specific characteristics (e.g. arm segment dimensions, 

fighting/punching ‘style’, attentional focus and perception of own performance 

capabilities) contribute to high MV (Davids et al., 2006; Halperin et al., 2017). 
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Furthermore, the lack of associations between the variability of maximal punch 

biomechanics and boxing experience refutes the notion that novice boxers exhibit 

larger MV than experienced boxers. This is likely due to the dynamic nature of 

punching, whereby ballistic and accelerative phases of motion increase the probability 

of high MV as boxers compensate for superfluous movement in particular segments 

in attempts to ensure a relatively consistent end-product (Darling & Cooke, 1987; van 

den Tillaar & Ettema, 2006; Wagner et al., 2012). This suggests particular features of 

punching biomechanics are inherently erratic owing to an inter-dependent relationship 

between components of the kinetic chain and their degrees of freedom (mediolateral, 

anteroposterior, and transverse translations and rotations). In addition, the inter- and 

intra-subject variability between punch types and lack of relationship with years of 

boxing experience suggest MV is an intrinsic component of maximal punches.  

In view of these findings, coaches are encouraged to tailor training practices to 

accommodate for variation in punching technique with the use of technical and tactical 

drills that facilitate effective maximal punches and punch combinations based upon a 

boxer’s fighting ‘style’, and present boxing-specific analytical conditions (e.g. how to 

land a clean lead hook to the head of an opponent with a ‘stylist’ fighting style; Hickey, 

2006; Thomson, 2015). Such practices may offer boxer-specific offensive strategies 

and purposeful solutions to the unpredictable nature of opponents and changeable 

demands of general competition, suggesting the quantification and regular monitoring 

of MV might be an effective tool for coaches and boxers. The monitoring of MV via a 

‘feedback loop’ scheme (Figure 7.2) could foster the measurement of systematic 

changes and progressions in maximal punching performance. Providing systematic 

performance feedback to a boxer via this ‘loop’ could be a useful tool for monitoring 

maximal punches that could identify technical irregularities and behaviours, from which 
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specific training practices and interventions could be developed (Preatoni et al., 2013). 

Consequently, the synthesis of the findings from Chapters 3 and 4 highlight the role of 

different biomechanical qualities to maximal punches and the magnitude of MV these 

qualities can exhibit from punch-to-punch and boxer-to-boxer. Taken together, these 

novel findings suggest the degrees of velocity (kinematics) and force (kinetics) 

associated with maximal punching, alongside the magnitude of MV observed, are 

likely consequential of the boxer-specific characteristics identified in previous research 

(Davids et al., 2006; Halperin et al., 2017), regardless of boxing experience. These 

findings should cultivate coaches and boxers understanding of the biomechanical and 

MV qualities of different punch types, which in turn, serve as a framework to direct and 

inform the development of punch-specific training practices. 
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7.2.2. Resistance training and its application to maximal punching 

In order to develop RT programmes that enhance maximal punching performance and 

optimise boxer’s contest preparation, the quantification of the physical qualities 

considered important to punching, and their association with biomechanical punch 

analyses, was necessary. Though previous research has investigated the 

associations between physical qualities and punch impact forces (Loturco et al., 2016; 

Pilewska et al., 2017), it only examined straight punch (jab and rear-hand cross) 

techniques. Quantifying the associations between maximal punch biomechanics and 

physical performance-related measures via a battery of physical assessments could 

provide a comprehensive representation of the influence that specific physical qualities 

have on maximal punching performance, and subsequently, encourage the 

development of training practices and punch-specific RT interventions. 

To this purpose, Chapter 5 highlighted the association of muscular strength, 

power and speed qualities with the biomechanical characteristics underpinning 

Figure 7.2. The athlete's monitoring scheme: (I) the robust description of motor 
characteristics; (II) the interpretation of biomechanical measures; (III) the translation 
of complex biomechanical analyses into readily comprehensible information for 
application on the field (taken from Preatoni et al., 2013, p.71). 
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maximal punches. More specifically, moderate-to-large relationships were found 

between measures of muscular strength, power, and speed and maximal straight 

punch kinetics and kinematics. Indeed, the findings suggest boxers might find it 

challenging to maximise the biomechanical qualities of maximal punches without 

possessing a degree of relative strength (Cormie et al., 2011), with this variable also 

influencing force-time characteristics (such as muscular power and speed; Suchomel 

et al., 2016). Notable associations were also documented for hook and uppercut 

punches, providing novel information concerning the importance of these physical 

qualities to all punch types. Moreover, with the findings in Chapter 5 showing the 

importance of muscular strength, power, and speed to maximal punching, it was 

necessary to establish if enhancing these physical traits via RT interventions could 

facilitate increases in maximal punch biomechanics. Consequently, a thorough 

appraisal of different RT protocols (with programme characteristics such as load and 

training modality informed by the associations established in Chapter 5) and their 

effects upon maximal punch biomechanics and physical performance-related qualities 

was undertaken (Chapter 6) to identify the optimal method/modality for improving 

these characteristics. 

 The investigation involving different RT programmes reported in Chapter 6 is 

the first study to reveal ST and CT interventions directly enhance maximal punch 

biomechanics and their underpinning physical performance-related qualities. Indeed, 

RT is effective at augmenting these qualities among amateur boxers. More 

specifically, both ST and CT protocols improved the majority of biomechanical and 

physical performance-related measures pre-to-post intervention, with the CT group 

exhibiting larger performance increases. This novel finding suggests that CT should 

be preferentially implemented within a boxer’s training programme as a means of 
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enhancing maximal punching performance. Though the effects of CT on maximal 

punching biomechanics had not previously been examined, the larger performance 

increases among boxers following the CT programme compared to ST substantiated 

findings in other sports (de Villarreal et al., 2011; 2013; Hammami et al., 2017; Rahmi 

et al., 2005). Indeed, the elevated neuromuscular stimulation and musculoskeletal 

activation associated with CT protocols benefitted dynamic full-body movements 

performed at high-velocities (such as maximal punches) more so than ST alone (Seitz 

et al., 2014; Rassier et al., 2000; Tillin et al., 2009; Trimble & Harp, 1998). 

Consequently, the novel findings of Chapter 6 suggest CT was likely to have increased 

the upper-extremity function at high-velocities (Swanik et al., 2016) and enhanced the 

force generation capabilities of the lower-limbs (Davies et al., 2015); such changes 

plausibly combined to augment the kinetic and kinematic qualities of maximal punches 

among the boxers in this group. Thus, coaches and boxers are advised to re-examine 

the structure of their current training practices and consider the implementation of CT 

as part of their contest preparation strategies in order to improve boxing performance. 

This may be achieved via the development of a boxing-specific periodised training 

plan that is informed by the biomechanical and physical performance-related 

characteristics of maximal punching alongside the physiological requirements of 

competition (see Appendix 8). 

 The findings embedded within this thesis contribute novel empirical information 

to the understanding of maximal punch biomechanics, MV, and the physical qualities 

that influence them, in addition to the effects of different RT programmes on these 

characteristics of amateur boxing performance. The interaction between these 

characteristics and maximal punching performance provides valuable information to 

coaches and boxers pertaining to the physical performance-related variables 
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influencing the technical intricacies of punching and potentially, boxing performance 

per se. As a whole, the contents of thesis enhance our understanding of maximal 

punching and the biomechanical and physical performance-related qualities that 

underpin it. Accordingly, such insight might inform pre-competition strategies based 

upon boxer’s maximal punch biomechanics and physical performance-related 

measures, alongside their technical and tactical capabilities. 

 

7.3. Limitations 

7.3.1. External validity 

7.3.1.1. Sample standard and size 

Though all boxers were required to meet specific criteria to be eligible for each study 

(≥ 2 years boxing experience, and ≥ 2 official bouts), none were categorised as ‘elite’ 

(i.e. currently competing at international level). Experienced/elite boxers have been 

reported to exhibit superior punch forces (Joch et al., 1981; Leal & Spaniol, 2016; 

Smith, 2006; Smith et al., 2000), lower punch force variability (Lenetsky et al., 2017) 

and greater shoulder joint strength (Tasiopoulos et al., 2015; 2018) than less 

experienced/novice boxers. Likewise, higher peak fist accelerations and punch 

accuracy reported for experienced Kung Fu practitioners compared to novices (Neto 

et al., 2013). As a result of these biomechanical and physical performance-related 

differences between elite and sub-elite boxers and martial artists, it is acknowledged 

that the training stimulus required to achieve meaningful performance improvements 

may have to be larger for elite boxers than sub-elites. Though the training programmes 

presented in Chapter 6 might improve performance measures of elite boxers, it seems 
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plausible the increases in such a cohort will not be of the same magnitude(s) as lesser 

trained boxers. Thus, future research is warranted to establish the biomechanical and 

physical performance-related measure changes resulting from RT programmes 

between elite and sub-elite standards of boxers to enhance the understanding of 

punch technique and training stimulus requirements according to ability. 

With regard to sample size, each study (Chapters 3 to 6) in this thesis had 

appropriate sample sizes according to α priori (G*Power) calculations (see Appendix 

1) and larger samples than comparable studies. However, previous authors have 

suggested that sample sizes > 40 are required for data findings to be accurately 

generalised across the relevant population (Atkinson & Nevill, 1998), particularly with 

respect to performance variability (Batterham & Atkinson, 2005). Indeed, systematic 

bias (e.g. general learning or fatigue effects on the tests) and random error (e.g. 

biological or mechanical variation) is suggested to influence intra-trial and test-retest 

measures positively (e.g. learning effect) or negatively (e.g. fatigue) (Atkinson & Nevill, 

1998; Batterham & George, 2003), with an increased probability of high-performance 

variability with small sample sizes (Batterham & Atkinson, 2005). Therefore, given the 

necessity for large sample sizes to identify meaningful performance changes in the 

presence of systematic bias and variability, it is acknowledged the results presented 

herein may not accurately represent the maximal punch biomechanics, physical 

performance-related qualities and intervention-related performance changes of 

amateur boxers in general. Future research should therefore re-examine the 

performance variables appraised in Chapters 3-6 to detect maximal punch 

performance differences and changes using larger cohorts of boxers. 

 



   

287 
 

7.3.1.2. Laboratory environment  

Previous research has established boxers and karatekas produce higher punch forces 

when standing at a self-selected distance from the target (Loturco et al. 2014; 2016; 

Neto et al., 2012). Though such research has not demonstrated if the variables 

recorded in this thesis are also impacted, a potential limitation of the current research 

relates to the fixed location of the punch target and force plates within the laboratory, 

which, for the taller boxers (≥ 1.8 m), might have resulted in fist contact prior to 

reaching full elbow extension during jab and rear-hand cross punches. Boxers were 

still able to execute punches at maximal intensity and demonstrate high fist velocities 

due to the utilisation of a punch target that moved upon impact (Atha et al., 1985; 

Nakano et al., 2014) and the biomechanical nature of the elbow whereby peak end-

point fist velocity occurs prior to full arm extension (Piorkowski, 2009). Nonetheless, 

the peak fist and angular joint velocity values may have been affected by this 

laboratory setting. Future research therefore should examine the kinetics, kinematics, 

and MV of maximal punches executed from self-selected distances by amateur 

boxers. Identifying these differences should inform coaches and boxers as to the 

importance of judging and controlling distance in the execution of maximal punches 

(Bolander et al., 2009; Choi & Mark, 2004; Hristovski et al., 2006), and the movement 

variance between these conditions. 

Furthermore, given the nature of a ‘live’ target (i.e. the opponent is reactive, 

potentially unpredictable, and poses an offensive threat) during competition, and that 

punches, even if maximal, are performed in an open environment, an experimental 

protocol that better replicates such conditions could provide comparatively valid data 

to better understand bout conditions. Indeed, previous research reported notably lower 

punch forces in competitive bouts compared to punches performed in laboratory 
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settings (Pierce et al., 2006). In addition, punch assessments permitting combatants 

to step towards the target when striking (as is common in sparring and competition) 

have exhibited larger impact forces (~22%) and fist velocities (~10%) than stationary 

punches (Neto et al., 2012). Within this research, there was no additional footwork 

and/or punch preparation strategies prior to each punch trial nor were the trials 

executed in response to an external stimulus (e.g. light emitting diode (LED) located 

near to the punch target) and/or with the added threat of incoming punches (by a 

coach/boxer (Appendix 9) or appropriate boxing training device (e.g. Title ‘Gladiator 

Stick’, Title Boxing, Kansas City, United States (Appendix 10)). Despite potentially 

having less control over extraneous variables (e.g. additional footwork, defensive 

techniques etc.) using this protocol, such analyses could provide a more ‘realistic’ 

biomechanical assessment of punching that has a greater application to boxing 

competition. 

 

 

 

7.3.1.3. Absence of footwear during punch trials 

In attempts to create accurate foot segments and an overall lower-body marker model 

that would facilitate a precise assessment of lower-limb kinetics and kinematics in 3D 

spaces during maximal punches, boxers did not wear footwear of any kind (e.g. shoes, 

trainers, boxing boots etc.) during punch trials. Though no scientific research currently 

exists pertaining to the influence of footwear on maximal punch biomechanics, it is 

suggested that the barefoot condition of the punch trials in Chapters 3 and 6 may have 
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affected the lower-limb kinetics and kinematics of boxers, and consequently, is a 

potential limitation. Indeed, the momentum generated via the kinetic chain is reliant 

upon the generation of energy from feet against the ground (Cabral et al., 2010; 

Cheraghi et al., 2014) and this may not have been optimised during barefoot punch 

trials in comparison to the same punches performed with footwear (e.g. boxing boots). 

Previous research has reported how footwear increases the degree of 

metatarsophalangeal (MP) joint flexion (dorsiflexion) and elongates the initial length of 

the plantar muscle during a ‘push off’ in badminton (Wei, Liu, & Fu, 2009). In addition, 

footwear has also shown to produce greater GRF variables and joint kinematics (ankle 

and knee) during drop jumps (Koyama & Yamauchi, 2018) and peak vertical GRF and 

rotational forces (Tz, Mz) in golf swings (Worsfold, Smith, & Dyson, 2009) suggesting 

it might have impacted the kinetic and kinematic values reported herein. 

Future research should examine the kinetics, kinematics, and MV of maximal 

punches performed with amateur boxers wearing their preferred choice of footwear 

(e.g. boxing boots), and perhaps, compare results with the barefoot conditions of the 

current study. Identifying how boxing footwear affects maximal punches and the 

differences in comparison to barefoot punches could provide information to coaches 

and boxers concerning the effects of footwear on certain kinetic and/or kinematic 

variables during maximal punches, and potentially, how certain styles of footwear (i.e. 

a minimalist boxing boot vs a joint-supported boxing boot) affect maximal punches. 

 

7.3.2. Omission of GRF moments 

Though the current research quantified a selection of lower-body kinetic variables 

(peak GRF, peak joint moments and total impulse) across maximal punches, the 
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analysis of GRF moments (Mz and Tz - vertical moments about the force platform(s) 

(Richards, 2008) may have afforded useful and novel information concerning the 

lower-limb rotational forces of maximal punches. Mz represents the rotational moment 

about the vertical axis of the force platform(s) resulting from shear forces between the 

foot and ground (Worsfold, 2006), while Tz signifies the free moment about the 

subject’s centre of pressure (Robertson, Caldwell, Hamill, Kamen, & Whittlesey, 

2013). Whilst previous research has reported the GRF moments of golf swings 

(Worsfold, Smith, & Dyson, 2008), softball hitting (Iino, Fukushima, & Kojima, 2014) 

and tennis strokes (Akutagawa & Kojima, 2005), respectively, free moment analysis is 

limited within sports performance research (Fujii, Yamashita, Kimura, Isaka, & 

Kouzaki, 2015) analysis. Indeed, no research currently exists that has quantified the 

free moments of punches or other striking techniques (e.g. kicks) observed in combat 

sports. Consequently, the current research did not examine GRF moments due the 

difficulty in making meaningful inferences given the lack of normative data and 

comparative values relevant to punching performance in the literature. However, it is 

acknowledged that the analysis of these variables may be useful in determining the 

rotary forces and mechanics of maximal punches. Indeed, quantifying the Tz and Mz 

of the lead and rear legs (alongside GRF, joint moments and impulse) could offer more 

detailed information concerning the role of each leg in absorbing force and offering 

stability during maximal punches (lead leg), in addition to the rotational forces and 

traction properties (rear leg). 

 

7.3.3. Overall training load during resistance training interventions 
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The findings presented in Chapter 6 highlight the effectiveness of twice-weekly ST and 

CT sessions on maximal punch biomechanics and physical performance-related 

variables in comparison to boxing practice only (control group). However, though the 

boxers were advised to reduce the volume and/or frequency of their boxing-specific 

and cardiovascular-based training sessions to accommodate for the RT interventions, 

it is possible that overall training load varied between boxers across each group. 

Indeed, the lack of detailed descriptions concerning boxer’s entire training load 

(comprising concurrent aerobic, anaerobic, RT, and boxing-specific training sessions) 

across the 6-week period means that it cannot be stated unequivocally that the RT 

interventions were solely responsible for the maximal punch and physical 

performance-related improvements documented by ST and CT groups. Though 

training diaries completed over the six-week intervention period suggest differences 

between boxers and groups existed despite the intervention sessions being completed 

as suggested, the variation in training load means that some boxers may have 

diminished their potential performance adaptations resulting from additional 

cardiovascular- and boxing-specific conditioning training alongside the intervention 

sessions in attempt to maintain their endurance and fighting weight (Bourne et al., 

2002; Del Vecchio, 2011). Indeed, combining strength and endurance-training within 

the same training cycle (known as ‘concurrent training’) is reported to be sub-optimal 

for muscle strength and power development (Wilson et al., 2012), resulting from the 

‘interference phenomenon’ (Hickson, 1980), whereby strength and power training 

adaptations are blunted when two disparate forms of muscular contraction (i.e. 

strength and endurance) are trained simultaneously (Doma et al., 2019; Enright, 

Morton, Iga, & Drust, 2017). Therefore, it is unknown if such improvements were 

maximised given the additional cardiovascular and conditioning-based sessions 
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performed throughout the intervention period. Nontheless, in spite of this, both 

intervention groups made significant performance improvements from baseline 

measures in comparison to the control group which highlight the potential benefits of 

structured RT interventions to amateur boxers. 

A method that coaches and boxers could introduce as a means of monitoring 

overall training-load during training interventions is the calculation of ‘total weekly 

training-load’ for each training session (and competitive bout(s) if needed) via the 

rating of perceived exertion training-load (RPE-TL) method (Impellizzeri, Rampinini, 

Coutts, Sassi & Marcora, 2004). This involves performers rating the intensity of a 

training session within 30 minutes of its conclusion using the Borg 10-point RPE scale 

(Dias, Simão, Saavedra, Buzzachera, & Fleck, 2018; Haddad, Stylianides, Djaoui, 

Dellal, & Chamari, 2017) and multiplying the RPE value by the duration of the training 

session (in minutes) to offer an indication of the total training-load (Enright, 2014). 

From this, a valid method of quantifying weekly training-load can be achieved by 

summing the RPE loads of RT, endurance training and sport-specific technical/skill 

sessions (Impellizzeri et al., 2004). Furthermore, calculating the ‘‘total resistance-

training-load’ of RT sessions may assist in monitoring programme variables 

comprising RT interventions (e.g. repetitions, sets, training intensity (% 1RM lifted)) by 

multiplying repetitions, sets and training intensity to obtain one arbitrary unit for 

comparison (AU) (Enright, 2014; Haff, 2010; Heaselgrave, Blacker, Smeuninx, 

McKendry, & Breen, 2019; Peterson, Pistilli, Haff, Hoffman, & Gordon, 2011). Future 

research could also examine the long-term effect and relationship of weekly training-

load on maximal punching and physical performance in attempts to quantify the 

optimal training load to facilitate training adaptations whilst minimising peripheral and 

central fatigue (Márquez et al., 2017; Zając, Chalimoniuk, Maszczyk, Gołaś, & Lngfort, 
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2015) and accommodating for the physiological and mechanical demands of boxing-

specific training modalities (Finlay, Grieg, McCarthy, & Page, in press). 

 

7.3.4. Baseline discrepancies in muscular strength measures 

Analyses in Chapter 6 evidenced significant pre-to-post intervention improvements in 

maximal punch biomechanics and physical performance-related qualities having 

controlled for baseline differences in muscular strength between groups following CT 

and ST programmes (see Appendix 7). However, in spite of this additional analysis, it 

should be stated that these baseline strength differences (particularly for the back 

squat) could have influenced the magnitude of performance improvements and 

adaptations following the RT interventions, and as such, should be stated as a 

potential limitation of this particular intervention. 

 Previous research has reported how muscular strength influences numerous 

force-time characteristics (such as RFD, SSC, neuromuscular power, external 

mechanical power and limb acceleration), that subsequently influence athletic 

activities involving high-velocity motion and movements (Newton et al., 1997; 

Suchomel et al., 2016; 2018), based on the linear relationship between force and 

power production (Cormie et al., 2011a; 2011b). Therefore, it is plausible to suggest 

that the CT group were perhaps more likely to achieve greater training adaptations, 

and consequently, performance improvements in maximal punching and physical 

performance-related qualities given their greater baseline back squat 1RM values 

compared to C and ST groups. This is supported by findings in previous research 

whereby lower-body muscular strength has correlated with the peak fist velocities, 

upper-limb joint angular velocities (Chapter 5), accelerations (Loturco et al., 2014) and 
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impact forces (Loturco et al., 2016) of maximal punches, in addition to lower-body RFD 

(Andersen & Aagaard, 2006; Kraska et al., 2009; Thomas et al., 2015), external 

mechanical power (Cormie et al., 2010; Drid et al., 2015; Gorostiaga et al., 2005), 

jumping (Cormie et al., 2010; Kraska et al., 2015; Sheppard et al., 2008), sprinting 

(Barr, Sheppard, Agar-Newman, & Newton, 2014; McBride et al., 2009; Wisløff, 

Castagna, Helgerud, Jones, & Hoff, 2004) and agility (change of direction) (Spiteri et 

al., 2013; Spiteri, Newton, & Nimphius, 2015; Young, Miller, & Talpey, 2015). 

 Furthermore, the ‘contrasting’ exercises (i.e. power exercises) in the CT 

intervention were completed with loads irrespective of body mass and/or absolute 

muscular strength (e.g. bodyweight for CMJ, 3kg for med-ball slams). Whilst the 

optimal load for ‘contrasting’ exercise loading parameters for boxers has yet to be 

identified, findings in recent research (Loturco et al., 2018; 2019), suggest that 

individualising power training intensities according to a boxer’s physical capabilities 

may have enhanced acute muscular power responses to CT, including peak power 

and force-time characteristics, to a greater degree than the methods utilised in Chapter 

6. Indeed, the use of Optimum Power Loads (OPL - load capable of maximising power 

output) has increased peak power output in the jump squat (+7%) and bench throw 

(+8%) among elite amateur boxers after a 7-week intervention (Loturco et al., 2018), 

in addition to punch impact forces after a one-week intervention implementing the 

same protocol (~8%) (Loturco et al., 2019). Though the CT group exhibited larger jump 

squat (16.7%) and bench throw (15.8%) performance increases, the standard of 

boxers in previous research (Olympic boxers - Loturco et al., 2018; 2019) compared 

to those in Chapter 6 signify that the comparison of results should be made with 

caution given that experienced/elite boxers have exhibited greater punch forces (Joch 

et al., 1981; Leal & Spaniol, 2016; Smith, 2006; Smith et al., 2000) and greater strength 
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(Tasiopoulos et al., 2015; 2018) than sub-elite boxers. Therefore, the training stimulus 

required to achieve meaningful performance improvements will likely have to be 

greater for elite boxers than sub-elites, and so, the power/’contrasting’ exercise 

training load may need to be tailored specifically to individual boxers as their standard 

increases. 

As a result of the baseline strength differences and lack of boxer-specific power 

training loads, future research should investigate the effects of CT interventions on 

maximal punch biomechanics and physical performance-related qualities that 

implement individualised training intensities/loads for the ‘contrasting’ exercises over 

various intervention durations (e.g. 8–16-weeks) with boxers of comparable strength 

levels. This may help to elucidate the acute and chronic responses/adaptations to such 

training programmes that could assist in determining the most effective power loading 

parameters and mesocycle lengths for amateur boxers. 

 

7.3.5. Replacement of training sessions 

All boxers that undertook the ST and CT interventions (Chapter 6) performed all 12 of 

the assigned RT sessions across the 6-week intervention period (100% adherence 

rate). Prior to the interventions, boxers were instructed to remove one regular boxing 

skill/technical session and one cardiovascular/endurance training session each week 

in order to accommodate for the twice-weekly intervention sessions. However, given 

the diverse nature of each boxer’s weekly training regimen and workload prior to and 

during the RT interventions (e.g. intensity, duration and number of weekly boxing 

skill/technical, endurance-based, and circuit training sessions), their dissimilar weekly 

schedules, and ambiguity of the individual training diaries provided, it is unknown if all 
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boxers adhered to this instruction. Therefore, it is possible that boxers self-selected 

the sessions to be removed each week which could have affected the acute molecular 

responses and overall adaptations to the RT interventions (Coffey & Hawley, 2006). 

Further research is required to elucidate whether the addition and replacement of 

specific endurance and boxing skill sessions, and the temporal structure of strength 

and endurance-based sessions, impacts boxer’s acute and chronic muscle 

performance and recovery in addition to maximal punch biomechanics and physical 

performance-related qualities. Indeed, the application of a controlled and monitored 

training environment may offer useful evidence that can be used to inform and develop 

boxer’s training programmes and strategies to optimise performance and recovery.  

 

 

7.3.6. Interval between the assessment of maximal punch biomechanics and physical-

performance related qualities 

It is acknowledged the ≤ 30 day interval between biomechanical and physical 

assessments in Chapter 5 may have influenced the reported relationships between 

maximal punch variables and physical performance tests. Such an interval between 

assessments may have afforded boxers the opportunity to increase (or decrease) their 

physical-performance qualities (or even enhanced their punching technique) having 

already completed the maximal punch assessments. Though the majority of boxers 

completed both assessments within ~96 hours of each other (and all assessments by 

all boxers completed in the morning (~10:00 hrs)), some boxers could only be tested 

at specific times (i.e. anywhere up to 30 days) after the initial testing day due to the 

diverse and complex schedules of the sample. Ideally, all boxers would have 
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completed both assessments within 48-72 hours of each other as is recommended in 

the literature (Haff et al., 2016; Tanner et al., 2013), which would have prevented 

opportunities for boxers to augment their punching or physical performance qualities 

considerably between assessments. Therefore, in order to validate the relationships 

presented in Chapter 5, future research should perform maximal punch and physical 

performance tests in a controlled environment with a standardised protocol to examine 

if associations between such variables differ in comparison to those presented in the 

current thesis. 

 

7.3.7. Training session sequence, organisation and nutrient availability 

Boxers are required to train a diverse range of physical and physiological qualities 

amateur that must be accommodate for within their training (e.g. muscular strength, 

power, speed, aerobic endurance and anaerobic capacity - El Ashker et al., 2018; 

Slimani et al., 2017; Thomson et al., 2017b), in addition to sport-specific training (i.e. 

technical practice, sparring). Consequently, boxers often train several times each day, 

performing sessions that emphasise varying mechanical demands (e.g. RT and 

endurance training (ET)), with the intent of augmenting multiple physical and 

physiological qualities (Finlay et al., in press). This was the case with the boxers in 

Chapter 6, whereby additional sessions were completed, and in some cases, on the 

same day(s) despite them being asked to refrain from performing additional training 

sessions (RT- or endurance-based) outside of their programmed RT and boxing 

training sessions for the duration of testing and 6-week intervention period. Large 

training loads and the demands (intensities and volumes) of different training sessions 

can bring about considerable metabolic stress on the body (Goto, Ishii, Kizuka, & 
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Takamatsu, 2005; Goto, Ishii, Kurokawa, & Takamatsu, 2007) and influence the 

magnitude of responses and adaptations to each physical/physiological quality trained 

(Doma et al., 2017; 2019), including acute and chronic molecular (Coffey, Pilegaard, 

Garnham, O’Brien, & Hawley, 2009) and metabolic (Goto et al., 2005) responses. 

Therefore, factors that were not strictly monitored in Chapter 6, such as sequence of 

training sessions, the time of day sessions were performed, and nutrient availability 

around training sessions may have influenced the post-intervention training responses 

and adaptations of boxers, and as such, should be considered a limitation. 

The sequence of training sessions (e.g. RT before ET or ET before RT) and 

timing of sessions (i.e. morning or evening) are aspects of programme design that 

influence important biological and molecular functions and mechanisms responsible 

for training adaptations, such as intramuscular signalling (Atkinson et al., 2010), 

mTOR (Cunningham et al., 2007), peroxisome proliferator-activated receptor gamma 

coactivator-1 (PGC-1) (Baar, 2014) and protein synthesis (Carrithers et al., 2007). 

Both RT and ET trigger unique biological and biochemical mechanisms that generate 

differing intramuscular processes (Atherton et al., 2005; Fyfe et al., 2014; Robineau et 

al., 2016), with adenosine monophosphate-activated kinase-peroxisome proliferator 

activated receptor gamma coactivator-1 (AMPK-PGC-1) being up-regulated following 

ET, and Akt/protein kinase B-mammalian target of rapamycin-p70 S6 kinase (Akt-

mTOR-S6K) pathways up-regulated following RT, respectively (Enright, 2015). The 

differing processes between RT and ET mean that the initiation of the mTOR pathway 

can be suppressed if sessions are performed in close proximity (< 6 hours) (Baar, 

2014; Coffey et al., 2009; Robineau et al., 2016), and subsequently, can attenuate 

muscle protein synthesis (Breen et al., 2011) and the adaptive responses to both RT 

and ET (Cunningham et al., 2007; Hawley, 2009). More specifically, performing ET 
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immediately after RT in the morning has been reported to impair muscular strength, 

power and morphology improvements (Enright, 2015 Indeed, many of the 

intramuscular signalling mechanisms activated by endurance exercise inhibit mTOR 

and protein synthesis attenuating adaptations to RT when training both qualities 

concurrently (Baar, 2014; Chinsomboon et al., 2009; Wu et al., 2011). This could have 

influenced the adaptations achieved by the boxers in Chapter 6 who may have 

performed ET or boxing training sessions in close proximity to their intervention RT 

sessions. 

Previous research has reported how anything less than 6 hours between RT 

and ET sessions blunts molecular signals (Coffey et al., 2009) due to residual 

muscular fatigue and/or diminished intramuscular signalling and anabolic responses 

(Baar, 2014; Fyfe et al., 2014). Although performing RT and ET on the same day can 

maintain and/or improve performance (Lundberg et al., 2012; Murlasits, Kneffel, & 

Thalib, 2018; Petré, Löfving, & Psilander, 2018; Valéria et al., 2018; Wang et al., 2011), 

it is recommended that RT and ET be performed on alternate days to afford adequate 

recovery between modes of exercise that regulates residual fatigue, and therefore, 

fosters high training intensities and optimised strength, power and endurance 

adaptations (Eddens, van Someren, & Howatson, 2018; Shamim et al., 2018). 

Consequently, given that training multiple physical qualities simultaneously can 

compromise potential adaptations compared to independent training (Doma et al., 

2017; 2019; Wilson et al., 2012), and sessions performed in close proximity can 

attenuate adaptive processes (Coffey, et al. 2009; Goto et al., 2005; Goto et al., 2007; 

Robineau et al., 2016), the boxers in Chapter 6 may not have maximised the potential 

benefit of the ST and CT interventions. Future research should investigate the effects 
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of strictly regimented RT interventions performed in conjunction with ET and boxing-

specific sessions on maximal punches and physical performance-related qualities. 

Nutritional strategies can also affect intramuscular and biological processes 

associated with training-induced muscle adaptations (Tipton, 2008; Tipton & Wolfe, 

2004). Indeed, the consumption of carbohydrate and protein sources before, during, 

and after training session (both RT and ET) can positively influence a range of 

biochemical and molecular responses associated with chronic adaptation and acute 

muscle performance (Hawley, Hargreaves, & Ziegrath, 2006), including mTOR, PGC-

1 and protein synthesis (Barr, 2014; Carrithers et al., 2007; Churchley et al., 2007; 

Creer et al., 2005; Cunningham et al., 2007; Loenneke, Loprinzi, Murphy, & Phillips, 

2016; Shamim et al., 2018). Previous research has reported how carbohydrate 

supplementation around both ET and RT sessions can regulate the rate of muscle 

glycogen depletion and facilitates the rate of glycogen resynthesis after exercise 

(Breen et al., 2011; Burke, Hawley, Wong, & Jeukendrup, 2011; Shamim et al., 2018; 

Xu, Ji, & Yan, 2012). Moreover, the addition of protein sources before, during, and 

after training sessions can maximise the anabolic response to RT by triggering mTOR, 

increasing muscle protein synthesis, enhanced muscle glycogen sparing, prevention 

of low blood glucose concentration, and increasing glucose availability via hormonal 

responses to insulin (Breen et al., 2011; Jeukendrup et al., 2011; Shamim et al., 2018). 

These responses to protein and carbohydrate ingestion around training sessions 

creates an anabolic environment that leads to superior intramuscular signalling 

(Enright, 2015), which is particularly important for athletes completing multiple daily 

training sessions (Baar, 2014; Breen et al., 2011). Therefore, as the nutritional 

strategies of boxers in Chapter 6 were not monitored, it is possible the biological and 

molecular functions responsible for training adaptations were hindered due to 
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inadequate and/or insufficient nutritional strategies. Indeed, muscle glycogen can be 

depleted by as much as 40% following a single bout of running (Tesch et al., 1998), 

which can blunt biochemical and cellular pathways associated with muscle strength 

and hypertrophy (e.g. mTOR, muscle protein synthesis - Creer et al., 2005, Churchley 

et al., 2007; Shamim et al., 2018) in addition to negatively affecting performance in 

subsequent high volume, high-intensity and high skill training (Rico-Sanz, Zehnder, 

Buchli, Dambach, & Boutellier, 1999; Tesch, Ploutz-Snyder, Yström, Castro, & Dudley, 

1998). Thus, when multiple bouts of training are performed on a daily basis, careful 

consideration and provision of protein and carbohydrates (i.e. timing, quality and 

quantity) is required to optimise biochemical and molecular responses to training and 

improve subsequent performance(s) and recovery (Baar, 2014; Enright, 2015; 

Kessinger, 2018; Phillips & Van Loon, 2011; Zehnder, Rico-Sanz, Kühne, & Boutellier, 

2001). 

Consequently, future research should therefore investigate how controlled and 

closely monitored nutritional strategies/interventions (particularly around training 

sessions) influence such qualities alongside muscle performance and recovery among 

amateur boxers. For example, this can be accomplished by having boxers ingest 

combined whey protein or Essential Amino Acids (EAAs) and fast-digesting 

carbohydrates before and after RT and ET sessions given the effectiveness of these 

nutritional supplements in enhancing training performance and acute and chronic 

adaptations (via biochemical and molecular responses) in previous research 

(Drummond, Dreyer, Fry, Glynn, & Rasmussen 2009, Farnfield, Breen, Carey, 

Garnham, & Cameron-Smith, 2012; Loenneke et al., 2016; Rasmussen et al., 2000; 

Shamim et al., 2018; Vieillevoye, Poortmans, Duchateau, & Carpentier, 2010). 
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7.4. Future directions 

7.4.1. Integration of maximal punch kinetics, kinematics, and punch impact 

biomechanics 

Though an extensive analysis of punch biomechanics has been achieved, further 

variables (such as punch impact force) could be examined to provide a more 

comprehensive biomechanical analysis of punching. Indeed, punch impact force has 

been identified as a key characteristic of maximal punching (Lenetsky et al., 2013; 

Loturco et al., 2016; Turner et al., 2011), underpinning a boxer’s competitive level 

(Pierce et al., 2006; Smith, 2006), and considered fundamental for successful boxing 

performance (Chaabene et al., 2015). Integrating impact force values with 3D kinetics 

and kinematics (Chapter 3) (and potentially, joint powers, torque and GRF moments 

– Buśko, 2016; Janiak, Gajewski, & Trzaskoma, 1998; Karpilowski et al., 2011; 

Koryac, 1991; Pedzich et al., 2012; Tasiopoulos et al., 2015; 2018) would therefore 

provide a greater understanding of the biomechanics of different punch types and the 

relationship between impact and joint kinetics and lower-body kinetics (e.g. peak rear 

leg GRF), and upper-body kinematics (e.g. peak fist velocity). This would facilitate a 

better biomechanical understanding of the different punches that, if used according to 

the guidance of Preatoni et al. (2013) (Figure 7.2), could inform boxer’s training 

practices. 

 

7.4.2. Electromyographic analyses of maximal punches 

The findings of Chapters 3 and Chapter 5 provide detailed information concerning the 

biomechanics of physical performance-related qualities underpinning maximal 
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punches. However, it is acknowledged further investigation is required to obtain a 

more complete understanding of the role of specific musculature to different punch 

techniques.  A conventional means of achieving this goal, and in particular, recognising 

the muscular activation patterns underpinning maximal punches, could be the use of 

EMG analysis. Previous research has investigated the muscular activity across 

straight punches (Dyson et al., 2007; Lockwood, & Tant, 1997; McGill et al., 2010; 

Valentino et al., 1990; Zhang & Kang, 2011), and hook punches (Lenetsky et al., in 

press), identifying the role of the upper-body, lower-body, and trunk musculature to 

these punches. Therefore, relating EMG data to the maximal punch biomechanics 

(Chapter 3) and MV (Chapter 4) could assist in identifying the influence specific 

musculature exerts on facilitating maximal punch performance and the development 

of punch-specific technical- and strength and conditioning-based strategies. 

 

7.4.3. Biomechanics of combination punches 

Though single maximal punches are important to boxing performance (Smith, 2006; 

Smith & Draper, 2007), combination punches are also imperative, with ≥ 2 (Davis et 

al., 2013; El Ashker, 2011) and ≥ 3 punch combinations (Slimani et al., 2017) indicative 

of successful boxing outcome, irrespective of ability level (novice or elite). Only two 

studies of note have compared the biomechanical features of combination and single 

maximal punches (Piorkowski et al., 2011; Whiting et al., 1988), with single maximal 

punches exhibiting greater peak fist velocities than combination punches, but longer 

delivery times (due to longer counter-movements at initiation). These studies provide 

useful information pertaining to kinematic differences in single and combination 

punches, but further research is required to adequately establish the kinetic and 
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kinematic differences between various punch combinations (e.g. a jab followed by a 

rear-hand cross versus a lead hook followed by a rear uppercut) and the different 

number of punches within combinations (e.g. two, three, and four punch 

combinations). Quantifying the kinetic and kinematic qualities of different punch 

combinations could assist in informing boxer’s training practice and contest 

preparation strategies by characterising specific biomechanical attributes between 

combination modalities (e.g. largest peak fist velocities, lowest delivery times etc.), 

potentially providing coaches and boxers with an understanding of which punch 

combinations have the greatest probability of yielding successful boxing outcomes.  

7.4.4. Effects of different resistance training methods on punching performance 

Notwithstanding the findings reported in Chapter 6, the effects of other RT methods 

(e.g. OL, BT, and PT) on the punch biomechanics and performance-related variables 

were not investigated. Furthermore, Chapter 6 demonstrated CT was more effective 

than ST at increasing maximal punch biomechanics and the physical qualities 

influencing them. Despite these performance changes, the optimal loading 

parameter(s) for the power/’contrasted’ exercises fundamental to CT are unclear, 

particularly with regards to punch performance. Previous recommendations allude to 

ballistic exercises performed with 30-60% 1RM (Jones et al., 2013) and plyometrics 

with added loads (de Villarreal et al., 2013), while boxing-specific recommendations 

include bodyweight ballistic/plyometric exercises, various med-ball throws (Lenetsky 

et al., 2013), and maximal punches themselves (Turner et al., 2011) to be the optimal 

loading modalities. Consequently, future research ought to expand upon the results 

presented in Chapter 6 by analysing the impact of different RT interventions and CT 

protocols on maximal punch biomechanics and physical performance-related 

measures to ascertain the efficacy of each modality. 
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7.4.5. Bilateral versus unilateral resistance exercises 

The training interventions documented in Chapter 6, in addition to the majority of 

previous research examining the effects of RT programmes upon punching 

performance, have utilised predominantly bilateral exercises (e.g. back squat) in their 

programme design (Čepulėnas et al., 2011; Del Vecchio et al., 2019; Kim et al., 2018; 

Loturco et al., 2018). Though the efficacy of bilateral exercises at augmenting maximal 

punch biomechanics has been established across these studies, previous literature 

has suggested unilateral exercises (e.g. rear-foot elevated split squat) may have a 

superior transfer to sports performance as a result of the ‘bilateral deficit’, in addition 

to the correction of muscular imbalances (Behm et al., 2005; Costa et al., 2015). 

Indeed, given the characteristic ‘split stance’ (i.e. left foot leading (orthodox) or right 

foot leading (southpaw)) adopted by boxers during training and competition (Hickey, 

2006), it seems that unilateral exercises, particularly for the lower-body, may have a 

positive transfer to boxing performance. Moreover, unilateral muscular strength 

disparities between upper-limbs (Tasiopoulos et al., 2015; 2018) and lower-limbs 

(Mavi Var, 2019) have been identified among boxers, along with significant peak force 

imbalances between dominant and non-dominant limbs (Dos’Santos, Thomas, Jones, 

& Comfort, 2016), highlighting the potential benefits of unilateral exercise for correcting 

muscular imbalances typical of the sport. Additionally, the associations between GRF 

and certain physical qualities (lead leg GRF = muscular strength, rear leg GRF = 

speed) reported in Chapter 5 suggest the application of different RT exercises for 

particular limbs (i.e. lead leg = high-force; rear leg = high-velocity) might be warranted 

to optimise maximal punching performance. Therefore, as the effects of unilateral 

training on maximal punch biomechanics and their comparisons with bilateral training 
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have yet to be appraised, future research should analyse intervention-based 

performance changes resulting from these training methods (see Appendix 11; for 

example, CT-based bilateral and unilateral training programmes). Such insight could 

establish the optimal training modality for enhancing punching performance that in turn 

cultivates the development of comprehensive boxing- and punch-specific strength and 

conditioning strategies. 

 

 

7.4.6. Concurrent training  

In addition to muscular strength, power, and speed, competitive boxers also require 

high levels of cardiorespiratory fitness, including aerobic and anaerobic capacity, 

anaerobic power and lactate tolerance (Chaabene et al., 2015; El Ashker et al., 2018; 

Hanon, Savarino, & Thomas, 2015; Slimani et al., 2017; Thomson et al., 2017b). In 

order to maximise competitive performance, a boxer’s training must accommodate a 

diverse range of physical and physiological qualities, alongside technical skills, sport-

specific conditioning (i.e. sparring) and pre-fight strategies/tactics. However, 

completing a range of diverse training interventions within the same training cycle 

(known as concurrent training; Enright et al., 2017) to enhance each attribute can 

potentially ‘blunt’/compromise training adaptations compared to independent training 

due to the ‘interference’ phenomena (Wilson et al., 2012) and ‘resistance training-

induced sub-optimisation on endurance performance’ (RT-SEP) (Doma et al., 2017; 

2019) effect. Previous research has identified performing resistance and endurance-

based training in close proximity (0 to 6 hours between sessions) is sub-optimal for 

developing neuromuscular and aerobic qualities (Robineau et al., 2016). Indeed, 
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endurance training performed pre- (residual muscular fatigue) and post-RT 

(attenuated anabolic response) is reported to impair the quality of subsequent training 

sessions (Baar, 2014; Fyfe et al., 2014) resulting from RT-SEP (Doma et al., 2019). 

However, other studies have reported contradictory findings, with endurance training 

bearing no influence on strength increases when performed post-RT (Petré et al., 

2018), and have even reported to augment lower body strength (with unaffected 

aerobic capacity adaptations) when performed pre-RT (Murlasits et al., 2018; Valéria 

et al., 2018). 

In relation to boxing, concurrent training recommendations for professional 

boxing exist within the literature (Ruddock et al., 2016), but the performance changes 

of amateur boxers engaged in concurrent training have not been investigated. 

Previous research has reported punch biomechanics and physical performance-

related improvements following RT (Čepulėnas et al., 2011; Del Vecchio et al., 2017; 

2019; Hlavačka, 2014; Kim et al., 2018; Markovic et al., 2016) and boxing-specific 

punching drills (Kamandulis et al., 2018) among amateur boxers when performed in 

isolation, but not concurrently. The dearth of knowledge in this area means coaches 

and boxers are unlikely to have a comprehensive understanding of how to optimally 

integrate resistance- and endurance-based training sessions alongside each other (in 

addition to technical/skill practice). Identifying effective organisational approaches to 

a boxer’s training practice that limit the ‘interference’ and RT-SEP phenomena through 

the manipulation of variables such as inter-session recovery periods, endurance 

training modality (i.e. long slow distance (LSD) versus HIIT (high intensity interval 

training), volume and/or intensity, and training session sequence (i.e. strength followed 

by endurance), may lead to greater training adaptations, and subsequently, improved 

performance (Doma et al., 2019). Therefore, scrutinising the changes to amateur 



   

308 
 

boxing performance-related measures (biomechanical, physical and physiological) 

following concurrent training is warranted and may have significant implications for the 

development and implementation of boxer’s strength and conditioning programmes. 

 

 

 

7.4.7. Boxing-specific periodisation strategies 

Finally, it is recommended future research also investigates periodisation strategy for 

amateur boxing, given the range of physical performance-related qualities required for 

successful performance and the necessity for such qualities to be programmed 

adequately in order to bring about performance improvements. For example, previous 

researchers have documented significant punch performance changes following 

specific RT interventions (Čepulėnas et al., 2011; Del Vecchio et al., 2017; 2019; 

Hlavačka, 2014; Kim et al., 2018; Markovic et al, 2016), whilst others have not (Bružas 

et al., 2008), suggesting the programme characteristics, including for example training 

load, intensity and exercise selection, are potential moderating variables worthy of 

attention (Hlavačka et al., 2017; 2018; Ke-tien, 2012; Marques et al., 2017). 

Furthermore, the physiological and mechanical demands of boxing-specific training 

modalities (pad work and heavy bag training) necessitate that boxers have ample 

recovery periods between bouts of training/exercise if optimal adaptations are to be 

incurred (Finlay et al., in press). Accordingly, owing to the varying intervention 

methods and programme designs across previous boxing-related studies, it is likely 
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coaches and boxers do not possess a clear understanding of how to periodise and/or 

programme their training optimally.  

That boxers have to ‘make weight’ for competition adds further complexity to 

contest preparation, with acute weight loss (common among boxers) shown to 

negatively affect training adaptations and physical performance in both training and 

competition (Hall & Lane, 2001; Morton et al., 2010; Smith et al., 2001). Thus, given 

the requirements and characteristics of competition, it is imperative future research 

determines the optimal strategy to periodisation that maximises punch biomechanics 

and the physical qualities that influence them. Such strategies should also take into 

account boxer’s technical/skill practice, competition schedule and periods of weight 

loss and/or energy restriction in order to facilitate ‘meaningful’ training adaptations and 

adequate recovery between sessions (see Appendix 7). 
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Appendix 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.1. G*Power α priori sample size calculations informing Chapter 3. 
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Figure 8.2. G*Power α priori sample size calculations informing Chapter 5.
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Figure 8.3. G*Power α priori sample size calculations informing Chapter 6. 
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Appendix 2 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.4. Example residual analysis for peak fist velocity of the rear-hand cross. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.5. Example residual analysis for peak fist velocity of the lead hook. 
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Figure 8.6. Example of motion data processing for peak fist velocity data of a rear-

hand cross punch trial. 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 8.7. Example of motion data processing for peak fist velocity data of a lead 

hook punch trial. 
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Appendix 3 

 

 

Table 8.1.  Chapter 4 within-subject and biological variability of delivery time (ms) across punch techniques. 
 

 Within-subject coefficient of variation (mean CV%)  Biological coefficient of variation (BCV%) 

 Jab 
Rear-hand 

cross 
Lead hook 

Rear 
hook 

Lead 
Uppercut 

Rear 
Uppercut 

 Jab 
Rear-hand 

cross 
Lead 
hook 

Rear 
hook 

Lead 
Uppercut 

Rear Uppercut 

Boxer              

1 18.4 15.9 9.4 21.5 7.8 17.9  10.2 8.8 5.2 11.9 4.3 9.9 

2 13.5 20.9 10.4 27.5 14.3 13.4  7.5 11.6 5.7 15.2 7.9 7.4 

3 45.4 35.8 19.7 17.7 12.4 18.3  25.1 19.8 10.9 9.8 6.8 10.1 

4 16.0 33.9 12.8 12.7 8.8 13.0  8.9 18.7 7.1 7.0 4.9 7.2 

5 17.5 13.1 7.7 18.7 8.0 15.1  9.7 7.2 4.2 10.3 4.4 8.4 

6 27.7 25.1 18.1 24.4 4.0 8.6  15.3 13.9 10.0 13.5 2.2 4.8 

7 12.1 27.6 11.8 13.8 14.1 6.9  6.7 15.3 6.5 7.6 7.8 3.8 

8 17.6 16.8 9.2 14.5 15.1 16.8  9.7 9.3 5.1 8.0 8.4 9.3 

9 9.1 24.9 19.3 13.1 15.7 11.8  5.0 13.7 10.7 7.2 8.7 6.5 

10 16.5 28.1 10.9 13.2 14.6 11.6  9.1 15.5 6.0 7.3 8.1 6.4 

11 24.5 25.0 14.9 24.1 23.3 24.0  13.5 13.8 8.2 13.3 12.9 13.3 

12 16.7 15.1 7.8 19.1 7.6 8.0  9.2 8.4 4.3 10.6 4.2 4.4 

13 23.0 12.1 8.9 14.7 9.3 14.0  12.7 6.7 4.9 8.1 5.1 7.7 

14 8.4 24.6 9.1 14.7 3.5 14.6  4.6 13.6 5.0 8.1 1.9 8.1 

15 15.9 7.7 13.0 9.2 11.6 6.6  8.8 4.2 7.2 5.1 6.4 3.6 

              

Mean 18.8 21.8 12.2 17.3 11.3 13.4  10.4 12.0 6.7 9.5 6.3 7.4 

SD 9.0 8.1 4.1 5.2 5.1 4.8  5.0 4.5 2.3 2.9 2.8 2.6 
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Table 8.2.   Chapter 4 within-subject and biological variability of peak fist velocity (m/s) across punch techniques. 
 

 Within-subject coefficient of variation (mean CV%)  Biological coefficient of variation (BCV%) 

 Jab 
Rear-hand 

cross 
Lead hook 

Rear 
hook 

Lead 
Uppercut 

Rear 
Uppercut 

 Jab 
Rear-hand 

cross 
Lead 
hook 

Rear 
hook 

Lead 
Uppercut 

Rear Uppercut 

Boxer              

1 15.8 7.0 9.4 11.5 11.5 30.0  8.7 3.8 5.2 6.4 6.3 16.6 

2 30.6 5.1 9.8 5.6 73.7 19.4  16.9 2.8 5.4 3.1 40.7 10.7 

3 13.5 6.8 10.6 10.7 31.4 10.5  7.5 3.8 5.8 5.9 17.3 5.8 

4 11.5 10.0 4.8 5.2 2.5 7.9  6.4 5.5 2.6 2.9 1.4 4.4 

5 16.0 4.4 10.7 12.5 20.3 36.4  8.9 2.4 5.9 6.9 11.2 20.1 

6 13.5 11.0 9.1 9.0 5.2 15.8  7.5 6.1 5.0 5.0 2.8 8.7 

7 13.1 5.4 8.9 11.7 25.1 9.9  7.3 3.0 4.9 6.5 13.9 5.5 

8 16.8 10.2 12.6 7.7 33.1 5.5  9.3 5.6 7.0 4.3 5.5 3.0 

9 7.5 9.8 9.2 6.0 7.2 9.4  4.1 5.4 5.1 3.3 4.0 5.2 

10 11.8 6.1 10.4 8.5 17.7 10.1  6.5 3.4 5.7 4.7 9.8 5.6 

11 9.5 5.3 7.1 7.5 11.7 9.9  5.3 2.9 3.9 4.1 6.5 5.5 

12 12.4 6.8 7.3 8.4 4.2 6.1  6.8 3.8 4.0 4.6 2.3 3.4 

13 17.3 6.7 7.2 4.4 13.4 9.0  9.6 3.7 4.0 2.4 7.4 5.0 

14 12.7 9.5 6.7 10.3 28.2 26.2  7.0 5.3 3.7 5.7 -2.0 14.5 

15 11.7 7.5 6.5 11.3 34.7 8.9  6.5 4.1 3.6 6.2 19.2 4.9 

              

Mean 14.3 7.4 8.7 8.7 19.8 14.3  7.9 4.1 4.8 4.8 9.8 7.9 

SD 5.2 2.1 2.0 2.6 18.0 9.4  2.9 1.2 1.1 1.4 10.4 5.2 
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Table 8.3.   Chapter 4 within-subject and biological variability of peak shoulder joint angular velocity (deg/s) across punch 
techniques. 

 

 Within-subject coefficient of variation (mean CV%)  Biological coefficient of variation (BCV%) 

 Jab 
Rear-hand 

cross 
Lead hook 

Rear 
hook 

Lead 
Uppercut 

Rear 
Uppercut 

 Jab 
Rear-hand 

cross 
Lead 
hook 

Rear 
hook 

Lead 
Uppercut 

Rear Uppercut 

Boxer              

1 9.1 14.1 21.6 21.7 9.1 29.7  5.0 7.8 11.9 12.0 5.0 16.4 

2 18.8 14.7 15.3 14.6 26.8 6.6  10.4 8.1 8.5 8.1 14.8 3.6 

3 17.7 22.1 57.1 24.7 10.1 19.9  9.8 12.2 31.5 13.6 5.6 11.0 

4 9.6 12.8 9.7 18.0 8.7 14.3  5.3 7.1 5.4 9.9 4.8 7.9 

5 22.2 16.1 16.1 21.3 12.6 14.6  12.3 8.9 8.9 11.8 6.9 8.1 

6 33.5 14.4 14.8 15.8 13.7 11.3  18.5 8.0 8.2 8.7 7.6 6.3 

7 11.4 42.0 36.8 15.2 5.4 10.4  6.3 23.2 20.3 8.4 3.0 5.8 

8 20.8 17.5 17.9 23.1 14.3 17.4  11.5 9.7 9.9 12.8 7.9 9.6 

9 47.2 13.9 28.3 24.2 22.8 12.8  26.1 7.7 15.6 13.4 12.6 7.1 

10 9.9 16.5 40.0 17.8 21.6 17.9  5.5 9.1 22.1 9.9 11.9 9.9 

11 50.1 118.5 7.9 52.9 16.3 10.6  27.7 65.5 4.4 29.3 9.0 5.8 

12 15.1 14.8 6.8 15.5 7.0 9.0  8.3 8.2 3.8 8.6 3.9 5.0 

13 19.9 45.9 10.7 17.7 6.9 7.9  11.0 25.4 5.9 9.8 3.8 4.4 

14 11.8 58.5 19.0 17.3 9.8 24.7  6.5 32.4 10.5 9.6 5.4 13.6 

15 12.2 17.2 22.0 17.7 6.4 9.1  6.8 9.5 12.1 9.8 3.5 5.0 

              

Mean 20.6 29.3 21.6 21.2 12.8 14.4  11.4 16.2 11.9 11.7 7.1 8.0 

SD 13.1 28.4 13.8 9.4 6.5 6.5  7.2 15.7 7.6 5.2 3.6 3.6 



   

396 
 

 

 

 

Table 8.4.   Chapter 4 within-subject and biological variability of peak elbow joint angular velocity (deg/s) across punch 
techniques. 

 

 Within-subject coefficient of variation (mean CV%)  Biological coefficient of variation (BCV%) 

 Jab 
Rear-hand 

cross 
Lead hook 

Rear 
hook 

Lead 
Uppercut 

Rear 
Uppercut 

 Jab 
Rear-hand 

cross 
Lead 
hook 

Rear 
hook 

Lead 
Uppercut 

Rear Uppercut 

Boxer              

1 15.8 19.3 22.0 27.0 26.1 18.6  8.7 10.7 12.2 14.9 14.4 10.3 

2 9.9 5.6 19.3 15.9 29.9 10.9  5.5 3.1 10.7 8.8 16.6 6.0 

3 15.6 17.9 12.4 20.0 17.7 38.8  8.6 9.9 6.9 11.0 9.8 21.4 

4 19.9 15.9 19.5 17.5 21.1 17.5  11.0 8.8 10.8 9.7 11.7 9.7 

5 24.7 28.5 23.8 17.7 22.0 12.4  13.6 15.8 13.2 9.8 12.1 6.9 

6 98.8 19.7 31.1 19.2 26.3 13.0  54.6 10.9 17.2 10.6 14.6 7.2 

7 37.3 24.0 12.2 31.5 17.5 29.5  20.6 13.2 6.7 17.4 9.6 16.3 

8 34.0 59.5 22.6 42.9 16.2 21.7  18.8 32.9 12.5 23.7 9.0 12.0 

9 13.2 28.3 42.5 42.7 16.0 26.5  7.3 15.6 23.5 23.6 8.8 14.6 

10 26.8 53.8 19.5 35.4 14.6 28.1  14.8 29.7 10.8 19.6 8.1 15.5 

11 11.2 29.6 11.7 17.8 15.2 45.6  6.2 16.4 6.5 9.6 8.4 25.2 

12 19.4 26.3 22.4 23.3 15.2 15.2  10.7 14.6 12.4 12.9 8.4 8.4 

13 23.9 23.0 22.7 26.2 9.4 104.1  13.2 12.7 12.6 14.5 5.2 57.6 

14 10.5 29.8 27.2 18.5 18.3 45.4  5.8 16.5 15.1 10.2 10.1 25.1 

15 27.5 19.7 16.0 27.5 19.3 15.0  15.2 10.9 8.8 15.2 10.7 8.3 

              

Mean 25.9 26.7 21.7 25.5 19.0 29.5  14.3 14.8 12.0 14.1 10.5 16.3 

SD 21.8 13.8 7.9 9.0 5.3 23.7  12.1 7.6 4.4 5.0 2.9 13.1 
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Table 8.5.   Chapter 4 within-subject and biological variability of timing of peak shoulder joint angular velocity (% of punch) 
across punch techniques. 

 

 Within-subject coefficient of variation (mean CV%)  Biological coefficient of variation (BCV%) 

 Jab 
Rear-hand 

cross 
Lead hook 

Rear 
hook 

Lead 
Uppercut 

Rear 
Uppercut 

 Jab 
Rear-hand 

cross 
Lead 
hook 

Rear 
hook 

Lead 
Uppercut 

Rear Uppercut 

Boxer              

1 2.4 16.6 7.9 15.6 0.6 21.8  1.3 9.2 4.4 8.6 0.3 12.0 

2 4.3 6.5 5.4 13.5 0.0 0.9  2.4 3.6 3.0 7.5 0.0 0.5 

3 26.1 1.4 11.2 0.9 2.0 1.1  14.4 0.8 6.2 0.5 1.1 0.6 

4 5.0 8.2 12.5 1.4 0.6 0.7  2.7 4.5 6.9 0.8 0.3 0.4 

5 8.8 8.2 9.1 8.1 2.4 2.3  4.9 4.5 5.1 4.5 1.3 1.3 

6 7.7 2.0 0.9 0.9 0.6 0.9  4.2 1.1 0.5 0.5 0.3 0.5 

7 13.7 14.1 31.5 2.8 0.7 0.9  7.6 7.8 17.4 1.6 0.4 0.5 

8 6.7 2.3 11.4 1.3 0.6 0.6  3.7 1.2 6.3 0.7 0.3 0.3 

9 25.2 3.0 7.0 1.4 2.7 13.4  13.9 1.6 3.9 0.8 1.5 7.4 

10 7.4 6.2 20.9 8.3 11.5 17.0  4.1 3.4 11.6 4.6 6.4 9.4 

11 12.4 14.5 1.6 1.3 1.6 1.3  6.9 8.0 0.9 0.7 0.9 0.7 

12 1.6 2.2 0 0.9 0.5 0.6  0.9 1.2 0.0 0.5 0.3 0.3 

13 2.5 5.0 8.2 1.2 0.7 0.9  1.4 2.8 4.5 0.7 0.4 0.5 

14 2.3 5.5 8.0 10.8 0.5 16.5  1.2 3.1 4.4 6.0 0.3 9.1 

15 10.7 0.9 27.2 1.6 0.6 0.9  5.9 0.5 15.0 0.9 0.3 0.5 

              

Mean 9.1 6.4 10.9 4.7 1.7 5.3  5.0 3.6 6.0 2.6 0.9 2.9 

SD 7.7 5.1 9.2 5.2 2.8 7.6  4.2 2.8 5.1 2.9 1.6 4.2 
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Table 8.6.   Chapter 4 within-subject and biological variability of timing of peak elbow joint angular velocity (% of punch) across 
punch techniques. 

 

 Within-subject coefficient of variation (mean CV%)  Biological coefficient of variation (BCV%) 

 Jab 
Rear-hand 

cross 
Lead hook 

Rear 
hook 

Lead 
Uppercut 

Rear 
Uppercut 

 Jab 
Rear-hand 

cross 
Lead 
hook 

Rear 
hook 

Lead 
Uppercut 

Rear Uppercut 

Boxer              

1 0.6 0.7 1.4 16.9 14.0 8.7  0.3 0.4 0.8 9.3 7.7 4.8 

2 5.4 0.0 3.6 5.4 23.3 3.1  3.0 0.0 2.0 3.0 12.9 1.7 

3 1.4 2.1 7.5 6.2 6.4 6.6  0.8 1.2 4.1 3.4 3.5 3.7 

4 2.1 1.7 15.6 5.4 3.8 6.8  1.1 0.9 8.6 3.0 2.1 3.7 

5 3.1 1.2 1.0 4.3 4.7 4.0  1.7 0.7 0.6 2.4 2.6 2.2 

6 2.3 1.1 9.7 3.4 8.9 2.9  1.3 0.6 5.4 1.9 4.9 1.6 

7 2.1 1.4 15.6 13.9 3.8 6.8  1.1 0.8 8.6 7.7 2.1 3.7 

8 0.9 1.0 4.9 13.6 2.0 4.1  0.5 0.6 2.7 7.5 1.1 2.2 

9 2.5 1.5 5.1 14.6 7.2 5.6  1.4 0.8 2.8 8.1 4.0 3.1 

10 1.3 0.9 6.5 8.3 6.5 8.7  0.7 0.5 3.6 4.6 3.6 4.8 

11 0.5 2.6 3.5 24.0 8.3 27.8  0.3 1.4 1.9 13.3 4.6 15.4 

12 0.5 0.9 2.7 5.3 2.6 2.2  0.2 0.5 1.5 2.9 1.4 1.2 

13 1.2 0.9 4.1 7.0 2.5 27.9  0.6 0.5 2.3 3.9 1.4 15.4 

14 0.8 0.6 6.3 0.7 0.8 9.0  0.5 0.3 3.5 0.4 0.5 5.0 

15 1.7 0.5 14.3 24.7 3.7 4.2  0.9 0.3 7.9 13.7 2.1 2.3 

              

Mean 1.8 1.1 6.8 10.3 6.6 8.5  1.0 0.6 3.8 5.7 3.6 4.7 

SD 1.3 0.6 4.9 7.4 5.7 8.1  0.7 0.4 2.7 4.1 3.2 4.5 
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Table 8.7.   Chapter 4 within-subject and biological variability of peak lead leg GRF (N/s) across punch techniques. 
 

 Within-subject coefficient of variation (mean CV%)  Biological coefficient of variation (BCV%) 

 Jab 
Rear-hand 

cross 
Lead hook 

Rear 
hook 

Lead 
Uppercut 

Rear 
Uppercut 

 Jab 
Rear-hand 

cross 
Lead 
hook 

Rear 
hook 

Lead 
Uppercut 

Rear Uppercut 

Boxer              

1 14.1 18.0 7.7 5.2 5.7 8.2  7.8 10.0 4.2 2.9 3.2 4.5 

2 32.8 6.4 13.2 5.4 11.6 6.8  18.1 3.5 7.3 3.0 6.4 3.8 

3 22.2 11.1 11.1 9.4 14.5 14.9  12.2 6.1 6.1 5.2 8.0 8.2 

4 21.2 17.8 5.5 13.1 7.2 10.6  11.7 9.8 3.1 7.3 4.0 5.8 

5 58.2 11.5 16.9 14.9 6.8 6.0  32.2 6.3 9.4 8.2 3.8 3.3 

6 21.9 18.2 11.5 8.8 7.9 7.8  12.1 10.1 6.4 4.8 4.4 4.3 

7 17.1 14.3 5.8 9.8 10.6 9.2  9.4 7.9 3.2 5.4 5.9 5.1 

8 21.9 23.2 12.0 10.0 9.6 14.6  12.1 12.8 6.6 5.5 5.3 8.0 

9 12.9 10.7 12.1 8.0 7.0 7.3  7.1 5.9 6.7 4.4 3.9 4.0 

10 22.5 16.8 13.0 14.1 17.4 6.3  12.4 9.3 7.2 7.8 9.6 3.5 

11 36.3 9.8 22.7 9.2 5.3 28.5  20.1 5.4 12.5 5.1 2.9 15.8 

12 23.2 21.5 11.6 7.1 8.0 5.1  12.8 11.9 6.4 3.9 4.4 2.8 

13 33.1 9.6 17.9 12.2 14.4 10.6  18.3 5.3 9.9 6.7 8.0 5.9 

14 12.1 9.0 8.4 6.8 6.0 10.3  6.7 5.0 4.7 3.8 3.3 5.7 

15 23.7 7.6 6.7 15.0 7.1 4.7  13.1 4.2 3.7 8.3 3.9 2.6 

              

Mean 24.9 13.7 11.8 9.9 9.3 10.1  13.8 7.6 6.5 5.5 5.1 5.6 

SD 11.7 5.2 4.7 3.3 3.7 6.0  6.4 2.9 2.6 1.8 2.0 3.3 
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Table 8.8.   Chapter 4 within-subject and biological variability of peak rear leg GRF (N/s) across punch techniques. 
 

 Within-subject coefficient of variation (mean CV%)  Biological coefficient of variation (BCV%) 

 Jab 
Rear-hand 

cross 
Lead hook 

Rear 
hook 

Lead 
Uppercut 

Rear 
Uppercut 

 Jab 
Rear-hand 

cross 
Lead 
hook 

Rear 
hook 

Lead 
Uppercut 

Rear Uppercut 

Boxer              

1 7.2 6.5 18.3 7.6 7.2 12.3  4.0 3.6 10.1 4.2 4.0 6.8 

2 10.8 8.4 7.4 3.7 13.6 9.4  6.0 4.6 4.1 2.0 7.5 5.2 

3 9.8 10.1 9.3 10.4 9.8 14.7  5.4 5.6 5.1 5.7 5.4 8.1 

4 5.2 7.9 12.6 11.8 8.1 22.5  2.9 4.4 7.0 6.5 4.5 12.4 

5 12.8 5.9 13.9 14.4 8.2 12.9  7.1 3.3 7.7 7.9 4.5 7.1 

6 15.6 10.1 10.3 10.2 12.1 14.9  8.6 5.6 5.7 5.6 6.7 8.3 

7 7.6 9.3 35.1 25.5 13.5 12.7  4.2 5.2 19.4 14.1 7.5 7.0 

8 17.4 13.5 11.0 7.4 9.0 14.1  9.6 7.5 6.1 4.1 5.0 7.8 

9 21.8 21.4 9.8 7.8 6.9 7.8  12.1 11.8 5.4 4.3 3.8 4.3 

10 7.1 8.9 15.5 13.3 8.4 11.7  3.9 4.9 8.6 7.4 4.6 6.5 

11 16.8 6.0 43.4 6.8 15.3 12.8  9.3 3.3 24.0 3.8 8.5 7.1 

12 5.3 9.6 13.8 7.0 6.1 9.4  2.9 5.3 7.6 3.9 3.4 5.2 

13 26.5 21.3 17.2 12.6 39.2 5.2  14.6 11.8 9.5 7.0 21.6 2.9 

14 6.4 6.5 7.8 4.0 4.4 5.4  3.5 3.6 4.3 2.2 2.4 3.0 

15 18.8 9.3 31.4 9.9 17.1 17.1  10.4 5.1 17.4 5.5 9.5 9.5 

              

Mean 12.6 10.3 17.1 10.2 11.9 12.2  7.0 5.7 9.5 5.6 6.6 6.7 

SD 6.6 4.9 10.9 5.3 8.4 4.5  3.6 2.7 6.0 2.9 4.6 2.5 
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Table 8.9.   Chapter 4 within-subject and biological variability of lead leg net braking impulse (N/s/kg) across punch techniques. 
 

 Within-subject coefficient of variation (mean CV%)  Biological coefficient of variation (BCV%) 

 Jab 
Rear-hand 

cross 
Lead hook 

Rear 
hook 

Lead 
Uppercut 

Rear 
Uppercut 

 Jab 
Rear-hand 

cross 
Lead 
hook 

Rear 
hook 

Lead 
Uppercut 

Rear Uppercut 

Boxer              

1 -79.5 -40.3 -118.3 -34.5 -13.2 -41.9  -43.9 -22.3 -65.4 -19.1 -7.3 -23.14 

2 -164.7 -19.9 -38.8 -13.3 -39.9 -7.3  -91.0 -11.0 -21.4 -7.4 -22.1 -4.03 

3 -99.5 -57.9 -53.9 -28.9 -49.5 -38.1  -55.0 -32.0 -29.8 -16.0 -27.3 -21.04 

4 -49.4 -60.7 -49.1 -20.3 -38.8 -21.7  -27.3 -33.5 -27.2 -11.2 -21.5 -12.01 

5 -149.4 -15.4 -43.5 -20.6 -8.5 -32.7  -82.6 -8.5 -24.1 -11.4 -4.7 -18.06 

6 -55.0 -42.4 -91.3 -44.8 -20.9 -15.9  -30.4 -23.4 -50.5 -24.7 -11.6 -8.79 

7 -65.8 -39.1 -76.4 -15.2 -29.8 -13.9  -36.4 -21.6 -42.2 -8.4 -16.5 -7.66 

8 -78.2 -27.2 -79.4 -26.7 -23.4 -19.3  -43.2 -15.0 -43.9 -14.7 -13.0 -10.64 

9 -15.7 -34.9 -88.2 -20.5 -50.3 -25.3  -8.7 -19.3 -48.8 -11.3 -27.8 -13.98 

10 -45.8 -40.6 -44.4 -21.9 -76.5 -21.2  -25.3 -22.4 -24.6 -12.1 -42.3 -11.71 

11 -67.0 -43.0 -59.0 -31.8 -18.3 ---  -37.0 -23.7 -15.9 -17.6 -10.1 --- 

12 -94.0 -28.7 -30.7 -33.6 -20.8 -10.4  -52.0 -15.9 -17.0 -18.6 -11.5 -5.73 

13 -111.9 -22.4 -43.6 -30.8 -35.9 -22.5  -41.2 -12.4 8.7 -17.0 -19.8 -12.45 

14 -43.8 -35.4 -23.5 -27.5 -18.2 -20.6  -24.2 -19.6 -13.0 -15.2 -10.1 -11.38 

15 -108.5 -13.6 -61.3 -21.4 -95.2 -25.9  -60.0 -7.5 -33.9 -11.8 -52.6 -14.31 

              

Mean -81.9 -34.8 -60.1 -26.1 -36.0 -22.6  -43.9 -19.2 -29.9 -14.4 -19.9 -12.5 

SD 40.4 13.9 25.9 8.3 24.1 9.8  21.9 7.7 18.3 4.6 13.3 5.4 

 
Note: --- = Values omitted due to skewed data. 
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Table 8.10.   Chapter 4 within-subject and biological variability of lead leg vertical impulse (N/s/kg) across punch techniques. 
 

 Within-subject coefficient of variation (mean CV%)  Biological coefficient of variation (BCV%) 

 Jab 
Rear-hand 

cross 
Lead 
hook 

Rear 
hook 

Lead 
Uppercut 

Rear 
Uppercut 

 Jab 
Rear-hand 

cross 
Lead 
hook 

Rear 
hook 

Lead 
Uppercut 

Rear Uppercut 

Boxer              

1 19.3 36.3 27.8 37.8 16.4 32.1  10.7 20.1 15.3 20.9 9.1 17.7 

2 91.7 37.3 16.0 18.6 34.9 15.3  50.7 20.6 8.9 10.3 19.3 8.5 

3 93.9 54.8 40.6 29.0 22.0 35.0  51.9 30.3 22.4 16.0 12.2 19.3 

4 37.6 74.7 20.8 21.5 14.6 21.3  20.8 41.3 11.5 11.9 8.1 11.8 

5 97.4 16.6 27.2 27.1 13.5 27.0  53.9 9.2 15.0 15.0 7.5 14.9 

6 45.4 42.9 31.3 48.2 10.5 16.9  25.1 23.7 17.3 26.6 5.8 9.3 

7 34.3 47.1 22.9 16.7 24.5 14.8  19.0 26.0 12.6 9.2 13.5 8.2 

8 44.4 27.4 17.4 23.6 33.4 29.7  24.5 15.2 9.6 13.0 18.5 16.4 

9 8.3 35.0 31.2 22.6 36.8 22.3  4.6 19.3 17.2 12.5 20.3 12.3 

10 26.5 43.1 22.6 17.1 34.4 26.6  14.6 23.8 12.5 9.5 19.0 14.7 

11 57.8 39.5 40.0 39.1 34.1 ---  32.0 21.9 22.1 21.6 18.9 --- 

12 38.3 26.4 20.8 37.3 18.4 18.6  21.2 14.6 11.5 20.6 10.2 10.3 

13 77.2 26.1 22.2 32.3 13.7 22.5  42.7 14.4 12.3 17.8 7.6 12.4 

14 37.8 41.7 13.3 34.1 8.7 23.1  20.9 23.0 7.4 18.8 4.8 12.8 

15 72.4 15.3 53.9 23.2 58.1 13.9  40.0 8.5 29.8 12.8 32.1 7.7 

              

Mean 52.2 37.6 27.2 28.5 24.9 22.8  28.8 20.8 15.0 15.8 13.8 12.6 

SD 28.2 15.0 10.9 9.3 13.5 6.6  15.6 8.3 6.0 5.1 7.4 3.7 

 
Note: --- = Values omitted due to skewed data. 
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Table 8.11.   Chapter 4 within-subject and biological variability of rear leg net propulsive impulse (N/s/kg) across punch 
techniques. 

 

 Within-subject coefficient of variation (mean CV%)  Biological coefficient of variation (BCV%) 

 Jab 
Rear-hand 

cross 
Lead hook 

Rear 
hook 

Lead 
Uppercut 

Rear 
Uppercut 

 Jab 
Rear-hand 

cross 
Lead 
hook 

Rear 
hook 

Lead 
Uppercut 

Rear Uppercut 

Boxer              

1 34.5 33.8 38.0 53.9 28.3 39.6  19.1 18.7 21.0 29.8 15.6 21.9 

2 21.7 42.6 23.6 22.4 29.8 15.8  12.0 23.6 13.0 12.4 16.5 8.7 

3 111.2 72.6 38.6 42.7 38.6 51.3  61.5 40.1 21.3 23.6 21.4 28.4 

4 34.9 65.8 84.8 26.1 12.9 36.6  19.3 36.4 46.9 14.4 7.1 20.2 

5 59.4 35.1 55.1 44.8 20.9 36.8  32.8 19.4 30.4 24.8 11.5 20.3 

6 56.1 53.0 64.9 48.6 14.8 12.1  31.0 29.3 35.9 26.9 8.2 6.7 

7 76.1 51.4 96.3 30.4 46.6 14.7  42.0 28.4 53.2 16.8 25.8 8.1 

8 20.6 36.9 30.8 26.1 25.9 27.8  11.4 20.4 17.0 14.4 14.3 15.4 

9 47.4 64.4 89.2 24.5 25.6 22.7  26.2 35.6 49.3 13.5 14.1 12.6 

10 39.4 53.6 33.0 34.1 31.5 26.1  21.8 29.6 18.2 18.8 17.4 14.4 

11 47.7 65.8 28.9 48.0 80.7 ---  26.4 36.4 16.0 26.5 44.6 --- 

12 44.1 32.3 12.3 34.6 20.8 13.9  24.4 17.8 6.8 19.1 11.5 7.7 

13 38.5 21.6 70.0 25.3 55.8 23.4  21.3 11.9 38.7 14.0 30.8 13.0 

14 19.6 45.4 37.1 23.6 9.5 33.6  10.8 25.1 20.5 13.0 5.3 18.6 

15 58.3 30.1 16.4 33.7 56.8 64.8  32.2 16.6 9.1 18.6 31.4 35.8 

              

Mean 47.3 47.0 47.9 34.6 33.2 29.9  26.1 26.0 26.5 19.1 18.4 16.6 

SD 23.7 15.5 27.1 10.5 19.5 15.2  13.1 8.6 15.0 5.8 10.8 8.4 

 
Note: --- = Values omitted due to skewed data. 
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Table 8.12.   Chapter 4 within-subject and biological variability of rear leg vertical impulse (N/s/kg) across punch techniques. 
 

 Within-subject coefficient of variation (mean CV%)  Biological coefficient of variation (BCV%) 

 Jab 
Rear-hand 

cross 
Lead hook 

Rear 
hook 

Lead 
Uppercut 

Rear 
Uppercut 

 Jab 
Rear-hand 

cross 
Lead 
hook 

Rear 
hook 

Lead 
Uppercut 

Rear Uppercut 

Boxer              

1 4.2 31.5 12.4 51.3 18.7 42.5  2.3 17.4 6.8 28.3 10.3 23.5 

2 24.2 49.7 3.7 26.1 30.6 13.1  13.4 27.5 2.0 14.4 16.9 7.2 

3 103.4 75.1 46.3 37.4 28.2 51.4  57.1 41.5 25.6 20.7 15.6 28.4 

4 31.1 71.9 34.5 26.2 20.1 32.0  17.2 39.8 19.1 14.5 11.1 17.7 

5 43.7 34.0 29.7 57.6 22.9 28.1  24.2 18.8 16.4 31.8 12.6 15.5 

6 48.1 58.4 32.0 56.4 5.9 13.2  26.6 32.3 17.7 31.2 3.3 7.3 

7 32.4 55.1 22.4 33.3 31.7 15.3  17.9 30.4 12.4 18.4 17.5 8.5 

8 23.5 36.7 16.1 35.3 27.3 29.5  13.0 20.3 8.9 19.5 15.1 16.3 

9 46.9 57.5 40.0 26.8 31.0 25.9  25.9 31.8 22.1 14.8 17.1 14.3 

10 34.6 56.8 17.4 34.4 26.3 23.0  19.1 31.4 9.6 19.0 14.5 12.7 

11 51.5 65.7 52.9 53.3 57.2 ---  28.5 36.3 29.2 29.4 31.6 --- 

12 30.5 37.2 13.0 37.1 18.9 12.6  16.8 20.6 7.2 20.5 10.5 7.0 

13 36.2 24.8 41.3 28.6 45.8 26.4  20.0 13.7 22.8 15.8 25.3 14.6 

14 23.7 51.1 28.2 24.7 9.3 30.1  13.1 28.2 15.6 13.6 5.1 16.6 

15 50.8 35.6 59.1 43.5 10.9 57.4  28.1 19.7 32.7 24.1 6.6 31.7 

              

Mean 39.0 49.4 29.9 38.1 25.6 28.6  21.6 27.3 16.5 21.1 14.2 15.8 

SD 21.9 15.4 16.0 11.6 13.4 13.9  12.1 8.5 8.9 6.4 7.4 7.7 

 
Note: --- = Values omitted due to skewed data. 
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Table 8.13. Chapter 6 worthwhile change statistics for kinetic and kinematic variables across punch techniques. 

 

Jab Rear-hand cross Lead hook Rear hook Lead uppercut Rear uppercut 

SWC 

% 

MWC

% 

LWC 

% 

SWC 

% 

MWC

% 

LWC 

% 

SWC 

% 

MWC

% 

LWC 

% 

SWC 

% 

MWC

% 

LWC 

% 

SWC 

% 

MWC

% 

LWC 

% 

SWC 

% 

MWC

% 

LWC 

% 

DT 3.9 11.7 23.4 4.2 12.5 24.9 2.9 8.8 17.5 3.2 9.7 19.4 2.5 7.4 14.8 2.8 8.5 16.9 

FV 1.4 4.1 8.3 2.3 6.8 13.5 2.2 6.7 13.4 2.1 6.3 12.5 3.2 9.7 19.4 3.0 9.0 18.1 

SJAV 2.5 7.4 14.8 2.5 7.5 15.0 3.6 10.8 21.5 3.6 10.9 21.8 2.3 6.8 13.6 1.9 5.7 11.3 

EJAV 3.7 11.1 22.1 6.0 18.1 36.1 2.9 8.7 17.3 3.8 11.3 22.6 3.7 11.0 22 3.7 11.2 22.4 

LLGRF 4.9 14.6 29.3 2.9 8.7 17.4 3.1 9.3 18.6 1.9 5.6 11.1 3.9 11.6 23.2 3.7 11.0 22.0 

RLGRF 2.1 6.2 12.3 1.9 5.6 11.3 2.2 6.6 13.2 2.5 7.6 15.2 2.7 8.1 16.2 2.2 6.5 12.9 

LLFyI 13.8 41.4 82.8 10.8 32.4 64.9 10.8 32.3 64.7 6.9 20.7 41.4 10.4 31.2 62.5 5.9 17.7 35.4 

LLFzI 11.5 34.4 68.7 14.4 43.3 86.6 8.2 24.5 49.0 10.5 31.4 62.8 7.1 21.2 42.3 8.9 26.8 53.7 

RLFyI 6.2 18.6 37.1 9.9 29.7 59.4 8.8 26.4 52.9 6.3 18.9 37.9 7.9 23.8 47.6 6.5 19.5 39.0 

RLFzI 6.5 19.5 39.1 9.9 29.8 59.7 7.6 22.9 45.9 8.2 24.6 49.2 6.6 19.7 39.4 8.4 25.2 50.3 

 
SWC% = small worthwhile change, MWC% = moderate worthwhile change, LWC% = large worthwhile change, DT = delivery time, FV = peak resultant fist velocity, SJAV = peak shoulder joint 
resultant angular velocity, EJAV = peak elbow joint resultant angular velocity, LLGRF = peak lead leg resultant GRF, RLGRF = peak rear leg resultant GRF, LLFyI = lead leg net braking impulse, 
LLFzI = lead leg vertical impulse, RLFyI = rear leg net propulsive impulse, RLFzI = rear leg vertical  impulse 



   

406 
 

Appendix 5 

 

Table 8.14. Chapter 6 control group pre-to-post intervention performance change percentages (%) and Cohen’s d (95% 
confidence intervals) for kinematic and kinetic variable values across punch types. 
 

 Jab Rear-hand cross Lead hook Rear hook Lead uppercut Rear uppercut 

DT 
-0.3% 

0.03 (-1.21 to 1.27) 
+0.3% 

0.02 (-1.22 to 1.26) 
+0.9% 

0.1 (-1.15 to 1.33) 
-0.4% 

0.03 (-1.21 to 1.27) 
-1.0% 

0.1 (-1.15 to 1.33) 
-1.0% 

0.1 (-1.15 to 1.33) 

FV 
+0.7% 

0.3 (-0.97 to 1.52) 
+1.1% 

0.1 (-1.15 to 1.33) 
+0.5% 

0.1 (-1.15 to 1.33) 
+0.7% 

0.1 (-1.15 to 1.33) 
+0.7% 

0.1 (-1.15 to 1.33) 
+0.5% 

0.03 (-1.21 to 1.27) 

SJAV 
+1.5% 

0.1 (-1.15 to 1.33) 
+7.3% 

0.5 (-0.80 to 1.71) 
+1.2% 

0.2 (-1.06 to 1.42) 
+3.1% 

0.1 (-1.15 to 1.33) 
+1.8% 

0.2 (-1.06 to 1.42) 
+1.6% 

0.1 (-1.15 to 1.33) 

EJAV 
+2.4% 

0.2 (-1.06 to 1.42) 
+4.1% 

0.1 (-1.15 to 1.33) 
+3.8% 

0.2 (-1.06 to 1.42) 
+3.3% 

0.1 (-1.15 to 1.33) 
+3.9% 

0.03 (-1.21 to 1.27) 
+2.0% 

0.1 (-1.15 to 1.33) 

LLGRF 
-5.5% 

0.2 (-1.06 to 1.42) 
+19.0% 

1.2 (-0.24 to 2.41) 
+14.4% 

1.5 (-0.02 to 2.73) 
+2.6% 

0.4 (-0.89 to 1.61) 
+6.2% 

0.4 (-0.89 to 1.61) 
+15.3% 

1.4 (-0.09 to 2.62) 

RLGRF 
+5.9% 

0.5 (-0.80 to 1.71) 
-7.7% 

0.7 (-0.64 to 1.90) 
-3.2% 

0.2 (-1.06 to 1.42) 
+3.7% 

0.5 (-0.80 to 1.71) 
+4.8% 

0.3 (-0.97 to 1.52) 
+2.2% 

0.2 (-1.06 to 1.42) 

LLFyI 
+11.8% 

0.1 (-1.15 to 1.33) 
-0.1% 

0.03 (-1.21 to 1.27) 
+28.5% 

0.3 (-0.97 to 1.52) 
+4.5% 

0.1 (-1.15 to 1.33) 
+6.4% 

0.1 (-1.15 to 1.33) 
-18.6% 

0.7 (-0.64 to 1.90) 

LLFzI 
-37.5% 

0.9 (-0.48 to 2.10) 
+10.4% 

0.4 (-0.89 to 1.61) 
+40.5% 

0.7 (-0.64 to 1.90) 
+28.0% 

0.5 (-0.80 to 1.71) 
+34.8% 

0.8 (-0.56 to 2.00) 
-7.7% 

0.10.1 (-1.15 to 1.33) 

RLFyI 
-24.7% 

0.7 (-0.64 to 1.90) 
-2.7% 

0.1 (-1.15 to 1.33) 
-14.1% 

0.3 (-0.97 to 1.52) 
-6.0% 

0.2 (-1.06 to 1.42) 
-13.8% 

0.4 (-0.89 to 1.61) 
-23.7% 

1.0 (-0.40 to 2.20) 

RLFzI 
-32.2% 

1.0 (-0.40 to 2.20) 
-11.0% 

0.3 (-0.97 to 1.52) 
-6.1% 

0.2 (-1.06 to 1.42) 
-4.4% 

0.1 (-1.15 to 1.33) 
-6.1% 

0.2 (-1.06 to 1.42) 
-25.0% 

0.7 (-0.64 to 1.90) 

 
DT = delivery time, FV = peak resultant fist velocity, SJAV = peak shoulder joint resultant angular velocity, EJAV = peak elbow joint resultant angular velocity, LLGRF = peak lead leg resultant 
GRF, RLGRF = peak rear leg resultant GRF, LLFyI = lead leg net braking impulse, LLFzI = lead leg vertical impulse, RLFyI = rear leg net propulsive impulse, RLFzI = rear leg vertical  impulse 
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Table 8.15. Chapter 6 strength group pre-to-post intervention performance change percentages (%) and Cohen’s d (95% 
confidence intervals) for kinematic and kinetic variable values across punch types. 
 

 Jab Rear-hand cross Lead hook Rear hook Lead uppercut Rear uppercut 

DT 
-10% 

0.5 (-0.80 to 1.71) 
-10.1% 

0.6 (-0.72 to 1.80) 
-7.7% 

0.6 (-0.72 to 1.80) 
-7.9% 

0.7 (-0.64 to 1.90) 
-8.1% 

1.2 (-0.24 to 2.41) 
-7.2% 

1.6 (0.05 to 2.84) 

FV 
+7.1% 

1.0 (-0.40 to 2.20) 
+11.3% 

1.2 (-0.24 to 2.41) 
+12.9% 

1.6 (0.05 to 2.84) 
+11.5% 

1.5 (-0.02 to 2.73) 
+12.8% 

0.8 (-0.56 to 2.00) 
+12.7% 

1.0 (-0.40 to 2.20) 

SJAV 
+10.3% 

1.2 (-0.24 to 2.41) 
+25.7% 

0.9 (-0.48 to 2.10) 
+27.7% 

1.4 (-0.09 to 2.62) 
+26.5% 

1.6 (0.05 to 2.84) 
+21.6% 

1.5 (-0.02 to 2.73) 
+17.2% 

1.6 (0.05 to 2.84) 

EJAV 
+21.7% 

1.4 (-0.09 to 2.62) 
+23.4% 

0.8 (-0.56 to 2.00) 
+27.8% 

1.7 (0.12 to 2.94) 
+25.6% 

1.4 (-0.09 to 2.62) 
+40.9% 

1.6 (0.05 to 2.84) 
+37.4% 

1.2 (-0.24 to 2.41) 

LLGRF 
+18.3% 

0.6 (-0.72 to 1.80) 
+47.1% 

1.4 (-0.09 to 2.62) 
+11.6% 

0.7 (-0.64 to 1.90) 
+40.0% 

1.6 (0.05 to 2.84) 
+35.7% 

1.6 (0.05 to 2.84) 
+40.8% 

1.3 (-0.17 to 2.52) 

RLGRF 
+42.8% 

1.6 (0.05 to 2.84) 
+11.3% 

0.9 (-0.48 to 2.10) 
+32.7% 

1.4 (-0.09 to 2.62) 
+11.7% 

1.0 (-0.40 to 2.20) 
+26.9% 

1.3 (-0.17 to 2.52) 
+26.9% 

1.0 (-0.40 to 2.20) 

LLFyI 
-57.0% 

1.7 (0.12 to 2.94) 
-14.0% 

0.3 (-0.97 to 1.52) 
-36.5% 

1.6 (0.05 to 2.84) 
-31.2% 

0.7 (-0.64 to 1.90) 
-74.9% 

1.8 (0.20 to 3.05) 
-21.4% 

0.6 (-0.72 to 1.80) 

LLFzI 
-71.3% 

1.6 (0.05 to 2.84) 
-51.5% 

1.5 (-0.02 to 2.73) 
-57.2% 

1.2 (-0.24 to 2.41) 
-62.4% 

1.3 (-0.17 to 2.52) 
-64.9% 

1.6 (0.05 to 2.84) 
-43.4% 

1.4 (-0.09 to 2.62) 

RLFyI 
-59.5% 

1.4 (-0.09 to 2.62) 
-54.9% 

1.2 (-0.24 to 2.41) 
-64.1% 

1.7 (0.12 to 2.94) 
-39.9% 

0.9 (-0.48 to 2.10) 
-74.7% 

1.7 (0.12 to 2.94) 
-40.3% 

1.0 (-0.40 to 2.20) 

RLFzI 
-42.5% 

1.0 (-0.40 to 2.20) 
-72.3% 

1.5 (-0.02 to 2.73) 
-53.4% 

1.2 (-0.24 to 2.41) 
-61.8% 

1.3 (-0.17 to 2.52) 
-62.3% 

1.6 (0.05 to 2.84) 
-63.6% 

1.5 (-0.02 to 2.73) 

 
DT = delivery time, FV = peak resultant fist velocity, SJAV = peak shoulder joint resultant angular velocity, EJAV = peak elbow joint resultant angular velocity, LLGRF = peak lead leg resultant 
GRF, RLGRF = peak rear leg resultant GRF, LLFyI = lead leg net braking impulse, LLFzI = lead leg vertical impulse, RLFyI = rear leg net propulsive impulse, RLFzI = rear leg vertical  impulse 
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Table 8.16. Chapter 6 contrast group pre-to-post intervention performance change percentages (%) and Cohen’s d (95% 
confidence intervals) for kinematic and kinetic variable values across punch types. 
 

 Jab Rear-hand cross Lead hook Rear hook Lead uppercut Rear uppercut 

DT 
-16.0% 

1.0 (-0.40 to 2.20) 
-13.3% 

0.7 (-0.64 to 1.90) 
-11.0% 

0.6 (-0.72 to 1.80) 
-10.9% 

0.5 (-0.80 to 1.71) 
-10.4% 

0.6 (-0.72 to 1.80) 
-11.5% 

0.5 (-0.80 to 1.71) 

FV 
+17.2% 

1.3 (-0.17 to 2.52) 
+13.1 

1.0 (-0.40 to 2.20) 
+15.5 

1.3 (-0.17 to 2.52) 
+11.1 

1.1 (-0.32 to 2.31) 
+14.6 

1.0 (-0.40 to 2.20) 
+12.7 

0.8 (-0.56 to 2.00) 

SJAV 
+14.8% 

0.9 (-0.48 to 2.10) 
+42.6% 

1.6 (0.05 to 2.84) 
+27.9% 

1.2 (-0.24 to 2.41) 
+38.0% 

1.5 (-0.02 to 2.73) 
+26.0% 

1.6 (0.05 to 2.84) 
+20.9% 

1.5 (-0.02 to 2.73) 

EJAV 
+29.8% 

1.2 (-0.24 to 2.41) 
+39.1% 

1.2 (-0.24 to 2.41) 
+54.6% 

1.8 (0.20 to 3.05) 
+40.2% 

1.5 (-0.02 to 2.73) 
+53.8% 

1.6 (0.05 to 2.84) 
+47.6% 

1.5 (-0.02 to 2.73) 

LLGRF 
+42.7% 

0.9 (-0.48 to 2.10) 
+146.1% 

1.9 (0.27 to 3.16) 
+30.3% 

1.2 (-0.24 to 2.41) 
+79.1% 

1.7 (0.12 to 2.94) 
+42.2% 

1.5 (-0.02 to 2.73) 
+72.0% 

1.7 (0.12 to 2.94) 

RLGRF 
+75.6% 

1.6 (0.05 to 2.84) 
+28.4% 

1.0 (-0.40 to 2.20) 
+75.8% 

1.5 (-0.02 to 2.73) 
+14.3% 

1.0 (-0.40 to 2.20) 
+50.1% 

1.7 (0.12 to 2.94) 
+51.4% 

1.8 (0.20 to 3.05) 

LLFyI 
-12.6% 

1.7 (0.12 to 2.94) 
-16.6% 

0.4 (-0.89 to 1.61) 
-43.9% 

1.7 (0.12 to 2.94) 
-24.8% 

1.0 (-0.40 to 2.20) 
-58.8% 

1.7 (0.12 to 2.94) 
-29.4% 

1.7 (0.12 to 2.94) 

LLFzI 
-76.4% 

1.2 (-0.24 to 2.41) 
-59.0% 

0.9 (-0.48 to 2.10) 
-48.7% 

1.5 (-0.02 to 2.73) 
-64.0% 

1.1 (-0.32 to 2.31) 
-69.6% 

1.7 (0.12 to 2.94) 
-61.0% 

1.4 (-0.09 to 2.62) 

RLFyI 
-83.5% 

1.6 (0.05 to 2.84) 
-60.5% 

1.2 (-0.24 to 2.41) 
-82.3% 

1.5 (-0.02 to 2.73) 
-38.6% 

1.5 (-0.02 to 2.73) 
-84.7% 

1.5 (-0.02 to 2.73) 
-42.7% 

1.7 (0.12 to 2.94) 

RLFzI 
-57.6% 

1.6 (0.05 to 2.84) 
-81.9% 

1.4 (-0.09 to 2.62) 
-70.7% 

1.6 (0.05 to 2.84) 
-69.3% 

1.4 (-0.09 to 2.62) 
-66.8% 

1.5 (-0.02 to 2.73) 
-71.7% 

1.6 (0.05 to 2.84) 

 
DT = delivery time, FV = peak resultant fist velocity, SJAV = peak shoulder joint resultant angular velocity, EJAV = peak elbow joint resultant angular velocity, LLGRF = peak lead leg resultant 
GRF, RLGRF = peak rear leg resultant GRF, LLFyI = lead leg net braking impulse, LLFzI = lead leg vertical impulse, RLFyI = rear leg net propulsive impulse, RLFzI = rear leg vertical  impulse 
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Appendix 6 

Table 8.17. Chapter 6 individual boxer punch delivery time performance changes from pre-to-post intervention. 
 

 Jab Rear-hand cross Lead hook Rear hook Lead uppercut Rear uppercut 

Group 
(participant) 

Pre  
(ms) 

Post  
(ms) 

Pre  
(ms) 

Post  
(ms) 

Pre  
(ms) 

Post  
(ms) 

Pre  
(ms) 

Post  
(ms) 

Pre  
(ms) 

Post  
(ms) 

Pre  
(ms) 

Post  
(ms) 

             
Control             

1 337 334 434 425 592 584 541 535 649 643 617 610 
2 266 260 313 310 452 444 480 478 507 504 581 574 
3 285 280 352 374 599 600 622 614 675 672 789 784 
4 268 283 344 341 689 682 667 660 681 676 653 648 
5 317 312 373 370 611 606 565 576 569 554 611 602 

Mean ±  
SD 

295 ± 
31.3 

294 ± 
29.1 

363 ± 
45.0 

364 ± 
42.8 

589 ± 
85.7 

583 ± 
86.5 

575 ± 
72.3 

573 ± 
70.2 

616 ± 
75.7 

610 ± 
76.9 

650 ± 
81.8 

644 ± 
82.8 

 
Strength             

1 465 432 572 534 693 644 643 602 695 652 640 602 
2 321 280 393 340 679 630 677 626 675 632 605 554 
3 346 298 428 378 634 580 661 610 704 620 623 582 
4 325 278 405 354 488 441 498 442 639 582 611 564 
5 472 448 544 500 699 652 635 588 735 682 607 561 

Mean ±  
SD 

386 ± 
76.2 

347 ± 
85.3 

468 ± 
83.5 

421 ± 
89.3 

638 ± 
87.8 

589 ± 
87.4 

623 ± 
71.8 

574 ± 
74.8 

690 ± 
35.6 

634 ± 
37.2 

617 ± 
14.6 

573 ± 
19.5 

 
Contrast             

1 401 322 495 426 675 606 613 532 662 600 609 542 
2 393 340 603 535 625 546 529 470 620 528 535 478 
3 280 232 362 298 471 405 381 318 455 408 376 312 
4 381 322 419 370 659 590 643 582 709 644 633 570 
5 437 374 543 472 769 700 763 708 719 658 698 622 

Mean ±  
SD 

379 ± 
58.8 

318 ± 
52.6 

484 ± 
95.9 

420 ± 
91.2 

640 ± 
108.1 

569 ± 
107.6 

586 ± 
142.2 

522 ± 
143.7 

633 ± 
107.1 

568 ± 
102.6 

570 ± 
123.3 

505 ± 
119.6 

 

 
SD = standard deviation, ms = milliseconds 
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Table 8.18. Chapter 6 individual boxer peak fist velocity performance changes from pre-to-post intervention. 
 

 Jab Rear-hand cross Lead hook Rear hook Lead uppercut Rear uppercut 

Group 
(participant) 

Pre  
(m/s) 

Post  
(m/s) 

Pre  
(m/s) 

Post  
(m/s) 

Pre  
(m/s) 

Post  
(m/s) 

Pre  
(m/s) 

Post  
(m/s) 

Pre  
(m/s) 

Post  
(m/s) 

Pre  
(m/s) 

Post  
(m/s) 

             
Control             

1 5.76 5.76 6.26 6.30 9.85 9.92 9.49 9.50 7.73 7.86 7.65 7.71 
2 5.05 5.08 5.62 5.70 9.42 9.45 8.78 8.86 7.82 7.89 8.11 8.21 
3 5.33 5.38 5.66 5.71 8.54 8.58 8.25 8.35 7.95 7.98 10.17 10.14 
4 5.53 5.59 6.07 6.15 10.13 10.14 10.46 10.57 9.39 9.41 10.89 10.95 
5 4.96 5.01 5.01 5.09 9.84 9.94 8.72 8.75 8.51 8.56 9.76 9.79 

Mean ±  
SD 

5.33 ± 
0.33 

5.36 ± 
0.32 

5.72 ± 
0.48 

5.79 ± 
0.47 

9.56 ± 
0.62 

9.61 ± 
0.63 

9.14 ± 
0.86 

9.21 ± 
0.87 

8.28 ± 
0.69 

8.34 ± 
0.66 

9.32 ± 
1.38 

9.36 ± 
1.36 

 
Strength             

1 5.08 6.32 6.37 6.87 10.30 11.24 8.87 9.99 7.43 9.09 9.10 9.98 
2 5.32 5.67 5.24 6.17 9.56 10.78 9.29 10.59 10.45 11.52 11.52 13.46 
3 5.73 6.31 6.63 7.19 10.24 11.73 10.09 10.97 11.15 12.33 10.04 11.23 
4 6.26 5.67 5.96 6.66 9.72 10.73 9.64 10.69 8.27 9.34 9.35 10.39 
5 5.49 5.89 5.83 6.55 10.17 11.97 9.05 10.08 9.75 10.78 10.09 11.41 

Mean ±  
SD 

5.58 ± 
0.45 

5.97 ± 
0.33 

6.01 ± 
0.54 

6.69 ± 
0.38 

10.00 ± 
0.33 

11.29 ± 
0.55 

9.39 ± 
0.49 

10.46 ± 
0.42 

9.41 ± 
1.54 

10.61 ± 
1.39 

10.02 ± 
0.94 

11.30 ± 
1.35 

 
Contrast             

1 5.75 5.93 5.61 6.61 10.15 12.95 10.04 11.22 9.10 10.65 9.24 11.69 
2 5.22 6.09 6.08 6.84 10.42 12.28 10.12 11.19 9.64 10.91 9.40 10.47 
3 5.67 6.54 6.41 7.25 12.45 13.75 11.39 12.68 12.00 13.68 12.79 13.89 
4 5.01 6.84 7.41 8.37 11.10 12.82 10.00 11.33 10.28 12.20 11.92 13.16 
5 5.28 6.14 7.43 8.19 13.16 14.37 12.02 13.11 12.08 13.40 12.75 14.00 

Mean ±  
SD 

5.38 ± 
0.31 

6.31 ± 
0.37 

6.59 ± 
0.81 

7.45 ± 
0.79 

11.45 ± 
1.30 

13.24 ± 
0.83 

10.71 ± 
0.93 

11.91 ± 
0.91 

10.62 ± 
1.36 

12.17 ± 
1.39 

11.22 ± 
1.77 

12.64 ± 
1.52 

 

 
SD = standard deviation, m/s = metres per second 
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Table 8.19. Chapter 6 individual boxer peak angular shoulder velocity performance changes from pre-to-post intervention. 
 

 Jab Rear-hand cross Lead hook Rear hook Lead uppercut Rear uppercut 

Group 
(participant) 

Pre 
(deg/s) 

Post 
(deg/s) 

Pre 
(deg/s) 

Post 
(deg/s) 

Pre 
(deg/s) 

Post 
(deg/s) 

Pre 
(deg/s) 

Post 
(deg/s) 

Pre 
(deg/s) 

Post 
(deg/s) 

Pre 
(deg/s) 

Post 
(deg/s) 

             
Control             

1 656.12 662.36 475.44 588.78 675.92 680.38 655.76 660.27 1079.00 1092.99 1100.22 1123.75 
2 495.63 509.73 410.81 381.90 716.77 739.97 635.06 644.18 849.81 867.13 901.13 901.14 
3 552.06 561.20 523.39 601.59 509.01 501.23 536.84 611.75 855.75 871.50 911.78 930.40 
4 533.63 537.33 507.41 516.04 699.10 708.28 760.61 762.48 715.23 719.51 900.29 918.80 
5 507.34 516.42 457.00 459.71 738.04 747.42 816.61 830.37 818.24 845.56 853.28 867.65 

Mean ± 
SD 

548.96 ± 
63.84 

557.41 ± 
62.02 

474.81 ± 
44.26 

509.60 ± 
91.61 

667.77 ± 
91.64 

675.46 ± 
100.99 

680.98 ± 
109.84 

701.81 ± 
91.33 

863.61 ± 
132.97 

879.34 ± 
134.67 

933.34 ± 
95.99 

948.35 ± 
100.87 

 
Strength             

1 545.70 624.56 449.48 478.95 680.40 973.04 694.30 940.00 1026.78 1188.03 1014.16 1220.67 
2 614.38 653.63 447.76 566.75 613.61 760.50 626.26 819.46 828.65 993.09 900.37 1024.50 
3 638.90 700.24 597.05 851.30 586.00 704.76 749.32 896.42 913.29 1068.55 941.67 1098.83 
4 538.72 597.16 620.26 736.66 538.19 688.09 769.27 997.32 891.85 1079.61 933.73 1115.58 
5 601.87 667.02 417.07 548.44 588.17 712.12 750.17 889.04 903.48 1219.18 990.80 1144.76 

Mean ± 
SD 

587.91 ± 
43.87 

648.52 ± 
39.55 

506.32 ± 
94.65 

636.42 ± 
152.98 

601.28 ± 
51.96 

767.70 ± 
117.90 

717.86 ± 
58.36 

908.45 ± 
65.83 

912.81 ± 
71.76 

1109.69 ± 
92.62 

956.15 ± 
45.80 

1120.87 ± 
71.30 

 
Contrast             

1 609.71 685.70 458.04 615.84 706.18 912.77 745.70 1082.58 874.90 1126.33 913.02 1152.33 
2 616.73 711.47 487.17 607.83 760.06 940.28 802.01 1197.23 940.83 1157.91 1001.97 1238.94 
3 472.91 570.95 566.59 751.87 724.72 967.96 864.52 1183.82 1042.15 1325.22 1127.28 1350.52 
4 633.46 729.00 494.25 811.47 634.69 859.10 776.99 1100.15 931.22 1208.32 1026.92 1270.66 
5 743.84 836.04 473.88 748.43 1027.87 1246.79 1145.98 1417.87 1084.76 1324.73 1157.05 1306.57 

Mean ± 
SD 

615.33 ± 
96.38 

706.63 ± 
95.02 

495.99 ± 
41.82 

707.09 ± 
90.54 

770.70 ± 
150.85 

985.38 ± 
151.57 

867.04 ± 
161.92 

1196.33 ± 
133.63 

974.77 ± 
86.11 

1228.50 ± 
92.80 

1045.25 ± 
98.64 

1263.80 ± 
74.90 

 

 
SD = standard deviation, deg/s = degrees per second 
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Table 8.20. Chapter 6 individual boxer peak rear leg GRF performance changes from pre-to-post intervention. 
 

 Jab Rear-hand cross Lead hook Rear hook Lead uppercut Rear uppercut 

Group 
(participant) 

Pre  
(N/s) 

Post  
(N/s) 

Pre  
(N/s) 

Post  
(N/s) 

Pre  
(N/s) 

Post  
(N/s) 

Pre  
(N/s) 

Post  
(N/s) 

Pre  
(N/s) 

Post  
(N/s) 

Pre  
(N/s) 

Post  
(N/s) 

             
Control             

1 0.88 0.90 0.96 0.74 0.87 0.65 0.86 0.78 1.02 0.82 0.73 0.71 
2 1.06 0.86 0.81 0.75 0.86 0.82 0.75 0.85 0.84 0.89 0.66 0.73 
3 0.98 1.01 0.89 0.84 0.90 0.71 0.84 0.84 0.90 1.07 0.81 0.93 
4 0.96 1.06 0.81 0.83 0.68 0.77 0.68 0.75 0.96 0.91 0.71 0.62 
5 0.90 1.23 0.86 0.83 0.80 1.03 0.77 0.83 0.92 1.17 0.75 0.74 

Mean ± 
SD 

0.96 ± 
0.07 

1.01 ± 
0.15 

0.87 ± 
0.06 

0.80 ± 
0.05 

0.82 ± 
0.09 

0.80 ± 
0.14 

0.78 ± 
0.07 

0.81 ± 
0.04 

0.93 ± 
0.07 

0.97 ± 
0.15 

0.73 ± 
0.05 

0.75 ± 
0.12 

 
Strength             

1 0.94 1.21 0.77 0.99 0.78 1.19 0.70 0.90 0.74 1.06 0.68 0.75 
2 0.91 1.21 0.79 0.80 0.84 1.11 0.84 0.89 0.84 1.27 0.72 1.00 
3 1.21 1.73 1.08 1.23 1.02 1.29 1.01 1.05 1.30 1.42 0.97 1.30 
4 0.76 1.14 0.78 0.80 0.72 0.88 0.71 0.75 0.80 1.03 0.64 1.00 
5 1.07 1.70 0.94 1.03 1.14 1.53 0.85 1.00 1.12 1.31 0.74 0.71 

Mean ± 
SD 

0.98 ± 
0.17 

1.40 ± 
0.29 

0.87 ± 
0.14 

0.97 ± 
0.18 

0.90 ± 
0.18 

1.20 ± 
0.24 

0.82 ± 
0.13 

0.92 ± 
0.11 

0.96 ± 
0.24 

1.22 ± 
0.17 

0.75 ± 
0.13 

0.95 ± 
0.24 

 
Contrast             

1 0.82 1.23 0.83 0.99 0.81 1.52 0.81 0.95 1.10 1.64 0.87 1.16 
2 0.77 1.46 0.94 1.01 0.83 0.97 1.01 0.97 1.03 1.18 0.84 1.08 
3 1.08 1.90 0.88 1.26 0.92 1.39 0.92 1.03 0.99 1.44 0.78 1.19 
4 0.96 1.66 0.93 0.84 1.03 1.78 0.86 0.91 1.03 1.80 0.78 1.26 
5 0.90 1.70 0.77 1.47 0.73 1.93 0.68 1.04 0.89 1.52 0.62 1.21 

Mean ± 
SD 

0.91 ± 
0.12 

1.59 ± 
0.25 

0.87 ± 
0.07 

1.12 ± 
0.25 

0.86 ± 
0.11 

1.52 ± 
0.37 

0.86 ± 
0.12 

0.98 ± 
0.05 

1.01 ± 
0.07 

1.51 ± 
0.23 

0.78 ± 
0.09 

1.18 ± 
0.07 

 

 
SD = standard deviation, GRF = ground reaction force, N/s = Newtons per second 
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Appendix 7 

 

Tests of Between-Subjects Effects 

Dependent Variable:   Squat1RMpost   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected Model 6506.590a 3 2168.863 386.401 .000 .991 

Intercept 147.563 1 147.563 26.290 .000 .705 

Squat1RMpre 3860.757 1 3860.757 687.826 .000 .984 

Group 1588.273 2 794.137 141.482 .000 .963 

Error 61.743 11 5.613    

Total 213075.000 15     

Corrected Total 6568.333 14     

a. R Squared = .991 (Adjusted R Squared = .988) 

 

 

Figure 8.8. Chapter 6 back squat 1RM ANCOVA between-subject effects SPSS 

output. 

 

 

Pairwise Comparisons 

Dependent Variable:   Squat1RMpost   

(I) Group (J) Group 

Mean Difference 

(I-J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

1 2 -14.532* 1.499 .000 -18.758 -10.306 

3 -25.483* 1.522 .000 -29.775 -21.190 

2 1 14.532* 1.499 .000 10.306 18.758 

3 -10.950* 1.519 .000 -15.234 -6.667 

3 1 25.483* 1.522 .000 21.190 29.775 

2 10.950* 1.519 .000 6.667 15.234 

Based on estimated marginal means 

*. The mean difference is significant at the .05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 

 

Figure 8.9. Chapter 6 back squat 1RM ANCOVA pairwise comparisons SPSS 

output. 
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Tests of Between-Subjects Effects 

Dependent Variable:   Bench1RMpost   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected Model 5297.273a 3 1765.758 140.281 .000 .975 

Intercept 29.434 1 29.434 2.338 .154 .175 

Bench1RMpre 4004.240 1 4004.240 318.118 .000 .967 

Group 856.413 2 428.206 34.019 .000 .861 

Error 138.460 11 12.587    

Total 185399.000 15     

Corrected Total 5435.733 14     

a. R Squared = .975 (Adjusted R Squared = .968) 

 

Figure 8.10. Chapter 6 bench press 1RM ANCOVA between-subject effects SPSS 

output. 

 

 

Pairwise Comparisons 

Dependent Variable:   Bench1RMpost   

(I) Group (J) Group 

Mean Difference 

(I-J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

1 2 -8.461* 2.262 .010 -14.839 -2.083 

3 -18.569* 2.255 .000 -24.929 -12.209 

2 1 8.461* 2.262 .010 2.083 14.839 

3 -10.108* 2.245 .003 -16.438 -3.778 

3 1 18.569* 2.255 .000 12.209 24.929 

2 10.108* 2.245 .003 3.778 16.438 

Based on estimated marginal means 

*. The mean difference is significant at the .05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 

 

Figure 8.11. Chapter 6 bench press 1RM ANCOVA pairwise comparisons SPSS 

output. 
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Tests of Between-Subjects Effects 

Dependent Variable:   Deadlift1RMpost   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected Model 8440.004a 3 2813.335 382.865 .000 .991 

Intercept 20.025 1 20.025 2.725 .127 .199 

Deadlift1RMpre 4514.171 1 4514.171 614.330 .000 .982 

Group 2248.762 2 1124.381 153.016 .000 .965 

Error 80.829 11 7.348    

Total 353562.500 15     

Corrected Total 8520.833 14     

a. R Squared = .991 (Adjusted R Squared = .988) 

 

Figure 8.12. Chapter 6 HBD 1RM ANCOVA between-subject effects SPSS output. 

 

 

 

Pairwise Comparisons 

Dependent Variable:   Deadlift1RMpost   

(I) Group (J) Group 

Mean Difference 

(I-J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

1 2 -20.381* 1.717 .000 -25.222 -15.541 

3 -29.966* 1.757 .000 -34.921 -25.011 

2 1 20.381* 1.717 .000 15.541 25.222 

3 -9.585* 1.740 .001 -14.492 -4.677 

3 1 29.966* 1.757 .000 25.011 34.921 

2 9.585* 1.740 .001 4.677 14.492 

Based on estimated marginal means 

*. The mean difference is significant at the .05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 

 

Figure 8.13. Chapter 6 HBD 1RM ANCOVA pairwise comparisons SPSS output. 
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Tests of Between-Subjects Effects 

Dependent Variable:   Squat0.67post   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected Model 12.526a 3 4.175 189.994 .000 .981 

Intercept .439 1 .439 19.961 .001 .645 

Squat0.67pre 5.882 1 5.882 267.673 .000 .961 

Group 4.316 2 2.158 98.193 .000 .947 

Error .242 11 .022    

Total 585.530 15     

Corrected Total 12.767 14     

a. R Squared = .981 (Adjusted R Squared = .976) 

 

Figure 8.14. Chapter 6 normalised back squat 1RM ANCOVA between-subject 

effects SPSS output. 

 

 

 

Pairwise Comparisons 

Dependent Variable:   Squat0.67post   

(I) Group (J) Group 

Mean Difference 

(I-J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

1 2 -.764* .094 .000 -1.029 -.499 

3 -1.332* .096 .000 -1.601 -1.063 

2 1 .764* .094 .000 .499 1.029 

3 -.568* .095 .000 -.835 -.301 

3 1 1.332* .096 .000 1.063 1.601 

2 .568* .095 .000 .301 .835 

Based on estimated marginal means 

*. The mean difference is significant at the .05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 

 

Figure 8.15. Chapter 6 normalised back squat 1RM ANCOVA pairwise comparisons 

SPSS output. 
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Tests of Between-Subjects Effects 

Dependent Variable:   Bench0.67post   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected Model 9.885a 3 3.295 103.964 .000 .966 

Intercept .070 1 .070 2.203 .166 .167 

Bench0.67pre 6.693 1 6.693 211.176 .000 .950 

Group 2.232 2 1.116 35.206 .000 .865 

Error .349 11 .032    

Total 508.935 15     

Corrected Total 10.234 14     

a. R Squared = .966 (Adjusted R Squared = .957) 

 

Figure 8.16. Chapter 6 normalised bench press 1RM ANCOVA between-subject 

effects SPSS output. 

 

 

 

Pairwise Comparisons 

Dependent Variable:   Bench0.67post   

(I) Group (J) Group 

Mean Difference 

(I-J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

1 2 -.439* .115 .008 -.762 -.116 

3 -.948* .113 .000 -1.267 -.629 

2 1 .439* .115 .008 .116 .762 

3 -.508* .113 .003 -.827 -.190 

3 1 .948* .113 .000 .629 1.267 

2 .508* .113 .003 .190 .827 

Based on estimated marginal means 

*. The mean difference is significant at the .05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 

 

Figure 8.17. Chapter 6 normalised bench press 1RM ANCOVA pairwise 

comparisons SPSS output. 
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Tests of Between-Subjects Effects 

Dependent Variable:   Hbd0.67post   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected Model 16.393a 3 5.464 277.833 .000 .987 

Intercept .110 1 .110 5.612 .037 .338 

Hbd0.67pre 6.506 1 6.506 330.811 .000 .968 

Group 6.035 2 3.018 153.437 .000 .965 

Error .216 11 .020    

Total 975.489 15     

Corrected Total 16.609 14     

a. R Squared = .987 (Adjusted R Squared = .983) 

 

Figure 8.18. Chapter 6 normalised HBD 1RM ANCOVA between-subject effects 

SPSS output. 

 

 

 

Pairwise Comparisons 

Dependent Variable:   Hbd0.67post   

(I) Group (J) Group 

Mean Difference 

(I-J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

1 2 -1.059* .089 .000 -1.311 -.807 

3 -1.566* .091 .000 -1.824 -1.308 

2 1 1.059* .089 .000 .807 1.311 

3 -.507* .089 .000 -.759 -.255 

3 1 1.566* .091 .000 1.308 1.824 

2 .507* .089 .000 .255 .759 

Based on estimated marginal means 

*. The mean difference is significant at the .05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 

 

Figure 8.19. Chapter 6 normalised HBD 1RM ANCOVA pairwise comparisons SPSS 

output. 
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Appendix 8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Month

Week/Microcycle 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Competition Phase AR AR AR AR

Resistance training modality BC BC BC BC

Cardiovascular training modality CO CO CO CO

Contest/Fight X X X X X

Peaking

COCO

G

CTb

OEU

CTp CTmp CTb CTp CTmpCTmp CTb CTp CTmp CTb

ARS/P

ATC OEU ATCOD OEU OD ATC OEU OD ATC OD ATC

G S/P ARG GC C C C CS/P S/P S/P

February August SeptemberMay June JulyOctober November March April

G

December January

Intensity (1-5)

Volume (1-5)

P P P P P

OEU OD

CTb CTp CTmp BC CTp BC

Figure 8.20. Contrast training-based annual periodised training programme model for amateur boxing. 

G = General phase S/P = Specific/Preparatory phase C = Competition phase AR = Active recovery

CTb = Contrast training w/ ballistic exercises CTp = Contrast training w/ plyometric exercises CTmp = Contrast training w/ maximal punches BC = Bodyweight exercise circuits

OEU = Oxygen extraction & utilisation OD = Oxygen delivery ATC = Anaerobic threshold capacity CO = Cardiac output

P = Peaking

Key:
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Month

Week/Microcycle 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Competition Phase AR AR AR AR

Resistance training modality BC BC BC BC

Cardiovascular training modality CO CO CO CO

Contest/Fight X X X X X

Peaking

Volume (1-5)

P P P P P

ATC CO OEU OD CO

Intensity (1-5)

ATC OEU OD ATC OEU ODATC OEU OD ATC OEU OD

CT P+Mb BC ST CT BCCT P+Mb ST CT P+Mb ST

C AR G S/P AR

P+Mb ST CT P+Mb ST

C G S/P C G S/PC G S/P C G S/P

April May June July August SeptemberOctober November December January February March

G = General phase S/P = Specific/Preparatory phase C = Competition phase AR = Active recovery

ST = Strength training CT = Contrast training P+Mb = Plyometric + med-ball training BC = Bodyweight exercise circuits

OEU = Oxygen extraction & utilisation OD = Oxygen delivery ATC = Anaerobic threshold capacity CO = Cardiac output

P = Peaking

Key:

Figure 8.21. General resistance training-based periodised training programme model for amateur boxing. 
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Appendix 9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.22. Research framework for future biomechanical assessments of maximal punches (adapted from Bridge, 2011). 
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Appendix 10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 8.23. Title 'Gladiator Stick' boxing training device. 

Figure 8.24. Example training drill using Title 'Gladiator Stick' training device. 
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Appendix 11 

 

 

Table 8.21. Example contrast training protocols with bilateral exercises at different training phases of a 9-week boxing-specific 
periodised training programme. 
 

Weeks before 
competition 

Training phase Exercise Repetitions Sets Load Rest period 

9-7 ‘General’ 

1a.  Back squat 
1b.  Jump squat 

3 
3 

2 per 
87.5% back squat 1RM 
40% back squat 1RM 

3-5 minutes between 
sets 

        2a.  Bench press 
2b.  Bench throw 

3 
3 

2 per 
87.5% bench press 1RM 
40% bench press 1RM 

3a.  HBD 
3b.  HB jump  

3 
3 

2 per 
87.5% HBD 1RM 
40% HBD 1RM 

6-4 ‘Specific/Preparatory’ 

1a.  Back squat 
1b.  CMJ 

2-3 
3-5 

2 per 
90% back squat 1RM 

Bodyweight 

3-5 minutes between 
sets 

        2a.  Bench press 
2b.  Ballistic push-up 

2-3 
3-5 

2 per 
90% bench press 1RM  

bodyweight 

3a.  HBD 
3b.  Standing long/broad jump 

2-3 
3-5 

2 per 
90% HBD 1RM 

Bodyweight 

3-1 ‘Competition’ 

1a.  Back squat 
1b.  Maximal straight punches 

1-2 
3 per hand 

2 per 
92.5% back squat 1RM 

10 oz boxing gloves 

3-5 minutes between 
sets 

        2a.  Bench press 
2b.  Maximal hook punches 

1-2 
3 per hand 

2 per 
92.5% bench press 1RM  

10 oz boxing gloves 

3a.  HBD 
3b.  Maximal uppercut punches 

1-2 
3 per hand 

2 per 
92.5% HBD 1RM 

10 oz boxing gloves 

 
1RM = one-repetition maximum, HBD = hexagonal-bar deadlift, HB = hexagonal bar, CMJ = countermovement jump, MB = medicine ball. 
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Table 8.22. Example contrast training protocols with unilateral exercises at different training phases of a 9-week boxing-

specific periodised training programme. 
 

Weeks before 

competition 
Training phase Exercise Repetitions Sets Load Rest period 

9-7 ‘General’ 

1a.  Barbell split squat 

1b.  Split squat jumps 

3 per side 

3 per side 
2 per 

87.5% barbell split squat 1RM 

40%  barbell split squat 1RM 

3-5 minutes 

between sets 

        2a.  Landmine press 

2b.  Landmine punch throw 

3 per side 

3 per side 
2 per 

87.5% landmine press 1RM 

40% landmine press 1RM 

3a.  Reverse barbell lunge 

3b.  Alternating lunge jump  

3 per side 

3 per side 
2 per 

87.5% reverse barbell lunge 1RM 

40% reverse barbell lunge 1RM 

6-4 ‘Specific/Preparatory’ 

1a.  Barbell split squat 

1b.  Alternating single-leg bounds 

2-3 per side 

3-5 per side 
2 per 

90% barbell split squat 1RM 

Bodyweight 

3-5 minutes 

between sets 

        2a.  Landmine press 

2b.  MB shot put 

2-3 per side 

3-5 per side 
2 per 

90% landmine press 1RM  

2-4 kg 

3a.  Reverse barbell lunge 

3b.  Single-leg long jump 

2-3 per side 

3-5 per side 
2 per 

90% reverse barbell lunge 1RM 

Bodyweight 

3-1 ‘Competition’ 

1a.  Barbell split squat 

1b.  Maximal straight punches 

1-2 

3 per hand 
2 per 

92.5% barbell split squat 1RM 

10 oz boxing gloves 

3-5 minutes 

between sets 

        2a.  Landmine press 

2b.  Maximal hook punches 

1-2 

3 per hand 
2 per 

92.5% landmine press 1RM  

10 oz boxing gloves 

3a.  Reverse barbell lunge 

3b.  Maximal uppercut punches  

1-2 

3 per hand 
2 per 

92.5% reverse barbell lunge 1RM 

10 oz boxing gloves 

 

1RM = one-repetition maximum, MB = medicine ball. 
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Appendix 13 

 

 

 
 

Participant Information Sheet 

 
Title of Project: An analysis of the 3D kinetics and kinematics of six single maximal 

punches in amateur boxers. 

 

You are being invited to take part in a research study. Before you decide, it is important for 
you to understand why the research is being done and what it will involve. Please take time to 
read the following information carefully and discuss it with others if you wish. Ask me if there 
is anything that is not clear or if you would like more information. Take time to decide whether 
or not you wish to take part. Thank you for reading this. 
 
What is the purpose of the study? 
The purpose of this research study is to assess the kinetic (the forces that produce movement) 
and kinematic (the mechanics of movement) qualities of different punching techniques (jab, 
cross, lead hook, rear hook, lead uppercut and rear uppercut) within amateur boxing. These 
qualities include velocity, acceleration and ground reaction forces (GRF) that contribute to 
punching performance. 
 
Why have I been chosen? 
You have been chosen because you are a male amateur boxer who has at least one official 
bout and/or is deemed ‘competent’ at performing boxing techniques, having completed boxing 
specific-training at least twice per week at a registered boxing club for 2 or more years. 
 
Do I have to take part? 
It is up to you to decide whether to take part within the study. If you decide to take part you, 
will be given this information sheet to keep and be asked to sign a consent form. If you decide 
to take part you are still free to withdraw at any time and without giving a reason. A decision 
to withdraw at any time, or a decision not to take part, will not affect your rights in any way and 
will not be questioned. 
 
What will happen to me if I take part? 
You will complete a habituation session before the commencement of the research project to 
become familiar with the equipment being used, the requirements of the testing and the 
maximal punching techniques that will be assessed. Once completed, you will be required to 
perform maximal jab, rear-hand cross, lead hook, rear hook, lead uppercut and rear uppercut 
punches against a water-filled punching bag whilst being recorded by a 3D motion capture 
system. Testing will consist of one session that will last approximately 120 minutes, including 
warm-up, testing protocol and cool-down procedures. The testing procedure will consist of: 

• Jab and rear-hand cross assessments (6 trials per punch, 60 seconds rest between 
trials). 

• Lead and rear-hand hook assessments (6 trials per punch, 60 seconds rest between 
trials). 
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• Lead and rear-hand uppercut assessments (6 trials per punch, 60 seconds rest 
between trials). 

No one will be identifiable in the final report and all results will be kept confidential by the lead 
researcher. 
 
What are the possible disadvantages and risks of taking part? 

• Slight risk of injury (due to the execution of punches performed at maximal intensity). 

• Increased number of weekly training hours (if you continue with your current 
training/physical activity regimen). 

 
What are the possible benefits of taking part? 

• Discover personal punching kinematics and kinetics.  

• Discover the velocities produced for each punch type and how force production differs 
between punch types.  

• Possible understanding of why punching mechanics and ground reaction forces (GRF) 
differ between punching techniques. 

 
What if something goes wrong? 
If you wish to complain or have any concerns about any aspect of the way you have been 
approached or treated during the course of this study, please contact Dean of the Faculty of 
Science and Engineering, University of Chester, Parkgate Road, Chester, CH1 4BJ. 
 
Will my taking part in the study be kept confidential? 
All information which is collected about you during the course of the research will be kept 
strictly confidential so that only the researcher carrying out the research and the researcher’s 
university supervisor will have access to such information. Once the research had concluded, 
all research results and data will be kept confidential and secured on a USB pen stick, of which 
will be placed within a secure location for a minimum of 10 years. 
 
What will happen to the results of the research study? 
The results will be written up into a thesis which will be subsequently submitted for my PhD in 
Sport and Exercise Science. Individuals who participate will not be identified in any 
subsequent report or publication and all data will be kept completely confidential. 
 
Who is organising the research? 
The research is conducted as part of a PhD within the Department of Sport & Exercise 
Sciences at the University of Chester. The study is organised with supervision from the 
Department, by Edward Stanley, a PhD student. 
 
Who may I contact for further information? 
If you would like more information about the research before you decide whether or not you 
would be willing to take part, please contact: 
 
Edward Stanley – e.stanley@chester.ac.uk 
 
Thank you for your interest in this research. 
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Appendix 14 

 

 

 

 

 

 

 
Pre-test Questionnaire 

 
An analysis of the 3D kinetics and kinematics of six single maximal punches in 

amateur boxing 
 

Researcher:  Edward Stanley 
 

 
Name:_________________________________  Test date:________________ 
 
Contact number:____________________________ Date of birth:___________ 
 
In order to ensure that this study is as safe and accurate as possible, it is important that each 
potential participant is screened for any factors that may influence the study.  Please circle 
your answer to the following questions: 
 
1. Has your doctor ever said that you have a heart condition and that 

you should only perform physical activity recommended by a doctor? 
 
2. Do you feel pain in the chest when you perform physical activity? 
 
3. In the past month, have you had chest pain when you were 

not performing physical activity? 
 
4. Do you lose your balance because of dizziness or do you  

ever lose consciousness? 
 
5. Do you have bone or joint problems (e.g. back, knee or hip)  

that could be made worse by a change in your physical activity? 
 
6. Is your doctor currently prescribing drugs for your blood  

pressure or heart condition? 
 
7. Are you pregnant, or have you been pregnant in the last six months? 
 
8. Have you injured your hip, knee or ankle joint in the last six months? 
 
9. Do you know of any other reason why you should not  

participate in physical activity? 
 
Thank you for taking your time to fill in this form. If you have answered ‘yes’ to any of the 
above questions, unfortunately you will not be able to participate in this study. 
 

YES/NO 

YES/NO 

YES/NO 

YES/NO 

YES/NO 

YES/NO 

YES/NO 

YES/NO 

YES/NO 



   

430 
 

Appendix 15 
 
 

 
 

 
Participant Consent Form 

 
 

Title of Project: An analysis of the 3D kinetics and kinematics of six single maximal 
punches in amateur boxers. 
 
Name of Researcher:  Edward Stanley 
 
 

       Please initial box 
 
1. I confirm that I have read and understand the information sheet  
     for the above study and have had the opportunity to ask questions. 
 
 
2. I understand that my participation is voluntary and that I am free to  
     withdraw at any time, without giving any reason and without my  
     legal rights being affected. 
 
 
3. I agree to take part in the above study.    
 
 
 
 
 
 
___________________                _________________   _____________ 
Name of Participant Date  Signature 
 
 
 
 
 
 
 
Researcher Date Signature 
 
 


